Ignorare il fatto che dati **non** sono presentati con le corrette cifre significative. I numeri sono spesso in rappresentazione scientifica. Il numero di Avogadro é fissato pari a $6.023 \cdot 10^{23}$ ed é il numero di molecole nel volume di una gammomolecola. Si assuma che la densitá dell'acqua sia 1000 kg/m^3 . La costante gravitazionale è $G = 6.6726 \cdot 10^{-11} \, m^3/kgs^2$ senza errore. La costante nella legge di Coulomb è $K = 1/(4\pi\epsilon) = 1/(12.5664 \cdot 8.854210^{-12})$. Questa costante è nel SI e non ha errore. Si assuma che la velocitá della luce vale 300000 km/s. La velocitá del suono si assuma pari a 340 m/s. I risultati vanno presentati con **quattro** cifre significative (es. 1/5 = 0.2000 e non 0.2 oppure 1/3000 = 3.333E-04).

Domanda numero 1. Il peso é 2.0

Una carica puntiforme data in C si trova alla distanza data in m da un'altra carica data in C ed in posizione fissa. Determinare la velocitá con cui arriva la prima carica alla distanza di 1 nm dalla seconda se la sua massa é quella data in g, le due cariche sono di segno opposto e la prima carica é inizialmente ferma.

Dati 0.33017E-04 0.43891E-02 0.24323E-03 0.50790E-09

Risposta 0.5331E+12

Domanda numero 2. Il peso é 2.0

Una carica puntiforme data in C si trova alla distanza data in m da un'altra carica in posizione fissa. Data la velocitá in m/s con cui arriva la prima carica alla distanza di 1 nm dalla seconda, se la sua massa é quella data in g e se le due cariche sono di segno opposto, determinare il valore in C della carica in posizione fissa.

Dati 0.18126E-04 0.43214E-02 77286. 0.18676E-09

Risposta 0.3424E-17

Domanda numero 3. Il peso é 3.0

Una centrale idroelettrica deve produrre la potenza elettrica indicata in MW. Sapendo che l'altezza della caduta d'acqua è quella indicata in m e che la frazione di energia trasformata in energia elettrica è quella indicata, determinare il flussod'acqua in m³/s necessario al funzionamento della centrale.

Dati 109.29 150.44 0.61863

Risposta 119.7

Domanda numero 4. Il peso é 2.0

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Conoscendo l'induzione magnetica che produce in T e la sua resistenza in Ω determinare la potenza dissipata nel solenoide in kW.

Dati 14700. 0.63041E-01 2.9258 0.24478

Risposta 0.2440E-01

Domanda numero 5. Il peso é 1.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine si trova alla distanza data, anch'essa in cm, dire quanto è l'ingrandimento della lente.

Dati 38.715 79.739

Domanda numero 6. Il peso é 2.0

Due resistenza hanno i valori e gli errori che vengono dati in Ω . Dire l'errore in k Ω sul valore della resistenza totale, quando le due resistenze sono disposte in serie.

Dati 1407.9 14.455 5159.9 1.8232

Risposta 0.1628E-01

Domanda numero 7. Il peso é 1.0

Due sfere sono cariche e le due cariche sono date in C. La forza che agisce fra di esse è data in N. Determinare la distanza in mm fra i centri.

Dati 0.86426E-03 0.29538E-03 0.18392E+06

Risposta 111.7

Domanda numero 8. Il peso é 1.0

Le due cariche elettriche date in C sono disposte uniformemente su due sfere. Le due sfere si trovano ad una distanza data in cm. Determinare la forza in N che agisce fra di esse.

Dati 0.81406E-04 0.21698E-04 24.328

Risposta 268.2

Domanda numero 9. Il peso é 0.5

Quattro resistenze hanno i valori che vengono dati in Ω . Dire il valore della resistenza totale in k Ω quando esse vengono dispote in serie.

Dati 1182.1 12326. 5140.3 16545.

Risposta 35.19

Domanda numero 10. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in μ m da un protone (stessa carica, ma positiva) e poi in un secondo tempo si trova alla distanza data in nm dal protone. Determinare la velocitá che l'elettrone ha nel secondo punto sapendo che la velocitá nel primo punto era quella data in m/s.

Dati 0.44133E-05 0.14984E-01 0.24832E+08

Risposta 0.2313E+08

Domanda numero 11. Il peso é 1.0

Il kWh (1 kW per un'ora) è un'unitá di energia che corrisponde a 3600 kJ. In un impianto, in 24 ore viene impiegata l'energia data in kWh. Sapendo che la differenza di potenziale dell'impianto è quella data in V, dire qual è la corrente in mA che ha circolato nell'impianto.

Dati 78.520 229.44

Risposta 0.1426E+05

Domanda numero 12. Il peso é 3.0

Due resistenze hanno i valori e gli errori che vengono dati in Ω . Dire l'errore in Ω sul valore della resistenza totale, quando le due resistenze sono disposte in parallelo.

Dati 0.12562E+06 138.86 0.15297E+07 177.97

Risposta 119.6

Domanda numero 13. Il peso é 2.0

É data la distanza in m fra due punti A e B tra i quali è presente un campo elettrico costante. Sapendo che tra i due punti vi è una differenza di potenziale data in V con il suo errore, determinare l'errore sul campo elettrico in mV/m.

Dati 3.7556 236.25 0.60264

Risposta 160.5

Domanda numero 14. Il peso é 2.0

Un conduttore ha la resistivitá elettrica data in Ω m. Data la sua sezione in mm² e la sua lunghezza in m con il suo errore, determinare l'errore sulla sua resistenza in k Ω .

Dati 0.71440E-07 0.60250 81.672 0.13054E-01

Risposta 0.1548E-05

Domanda numero 15. Il peso é 1.0

Due conduttori hanno la stessa resistivitá che viene data in Ω m. Essi hanno anche la stessa sezione che viene data in mm². Essi hanno le lunghezze indicate in m. Dire qual è la resistenza totale in k Ω quando essi vengono collegati per una estremitá (in serie).

Dati 0.20191E-07 1.3133 104.61 107.21

Risposta 0.3257E-02

Domanda numero 16. Il peso é 3.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine si trova alla distanza data, anch'essa in cm, con il suo errore, dire quanto è l'errore sull'ingrandimento della lente.

Dati 5.6692 98.478 0.16462

Risposta 0.2904E-01

Domanda numero 17. Il peso é 0.5

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che l'immagine si forma alla distanza anch'essa data in mm, dire qual è la focale dell'obiettivo.

Dati 0.58954 0.35577

Risposta 0.2219

Domanda numero 18. Il peso é 2.0

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul primario ha il valore indicato con il suo errore, dire l'errore sulla differenza di potenziale sul secondario in kV.

Dati 2960.0 36200. 2061.2 2.6540

Risposta 0.3246E-01

Domanda numero 19. Il peso é 1.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine è ingrandita del fattore dato, dire qual è la focale in cm della lente.

Dati 5.4701 18.100

Risposta 5.184

Domanda numero 20. Il peso é 1.0

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che la focale è quella data in mm, dire quanto è ingrandita l'immagine prodotta.

Dati 0.32877 0.13078

Ignorare il fatto che dati **non** sono presentati con le corrette cifre significative. I numeri sono spesso in rappresentazione scientifica. Il numero di Avogadro é fissato pari a $6.023 \cdot 10^{23}$ ed é il numero di molecole nel volume di una gammomolecola. Si assuma che la densitá dell'acqua sia 1000 kg/m^3 . La costante gravitazionale è $G = 6.6726 \cdot 10^{-11} \, m^3/kgs^2$ senza errore. La costante nella legge di Coulomb è $K = 1/(4\pi\epsilon) = 1/(12.5664 \cdot 8.854210^{-12})$. Questa costante è nel SI e non ha errore. Si assuma che la velocitá della luce vale 300000 km/s. La velocitá del suono si assuma pari a 340 m/s. I risultati vanno presentati con **quattro** cifre significative (es. 1/5 = 0.2000 e non 0.2 oppure 1/3000 = 3.333E-04).

Domanda numero 1. Il peso é 3.0

Le due cariche elettriche date in C sono disposte uniformemente su un volume sferico. Le due sfere si trovano ad una distanza data in cm. Dato il diametro delle sfere in cm determinare la forza in N che agisce fra di esse. Controllare se le sfere sono sovrapposte.

Dati 0.88021E-04 0.28445E-04 5.3868 67.236

Risposta 0.6605

Domanda numero 2. Il peso é 2.0

Due resistenza hanno i valori e gli errori che vengono dati in Ω . Dire l'errore in k Ω sul valore della resistenza totale, quando le due resistenze sono disposte in serie.

Dati 938.26 8.0890 5315.8 1.5143

Risposta 0.9603E-02

Domanda numero 3. Il peso é 0.5

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Determinare l'induzione magnetica che produce in T quando è percorso dalla corrente data in mA.

Dati 12400. 0.14568 349.41

Risposta 0.3737E-01

Domanda numero 4. Il peso é 0.5

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico costante dato in V/m. Determinare la differenza di potenziale in mV fra i due punti.

Dati 2.2562 87.174

Risposta 0.1967E+06

Domanda numero 5. Il peso é 3.0

Una carica elettrica è data in C ed è disposta uniformemente su un volume sferico. Dato il raggio della sfera in cm determinare il *potenziale* in V alla distanza dal centro data in cm. *Controllare* se la distanza è maggiore o minore del raggio.

Dati -0.49663E-04 24.493 72.371

Risposta 0.1967E+06

Domanda numero 6. Il peso é 1.0

Il kWh (1 kW per un'ora) è un'unitá di energia che corrisponde a 3600 kJ. In un impianto, in 24 ore viene impiegata l'energia data in kWh. Sapendo che la differenza di potenziale dell'impianto è quella data in V, dire qual è la corrente in mA che ha circolato nell'impianto.

Dati 130.54 249.72

Risposta 0.2178E+05

Domanda numero 7. Il peso é 1.0

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che la focale è quella data in mm, dire quanto è ingrandita l'immagine prodotta.

Dati 0.38813 0.12059

Risposta 0.4508

Domanda numero 8. Il peso é 1.0

Una lampadina avente la resistenza indicata in Ω viene alimentata con la differenza di potenziale alternata di 220 V efficaci. Sapendo che la frazione indicata della potenza viene trasformata in luce, dire qual è la potenza in W che viene trasformata in calore.

Dati 253.25 0.33416

Risposta 127.3

Domanda numero 9. Il peso é 3.0

Un generatore produce la differenza di potenziale che viene data in V. La resistenza interna è data in Ω con il suo errore. Determinare l'errore sulla differenza di potenziale in kV agli estremi della resistenza data in Ω che viene disposta in uscita.

Dati 5934.0 0.17558E+07 1712.2 0.11206E+06

Risposta 0.3263E-03

Domanda numero 10. Il peso é 3.0

Un solenoide é immerso in un campo magnetico H dato in A/m disposto inizialmente lungo il suo asse. Dato il numero di spire del solenoide ed il loro raggio in cm, determinare la differenza di potenziale massima che si trova ai suoi estremi quando esso ruota con la frequnza data in Hz.

Dati 25841. 2835.1 41.989 61.947

Risposta 0.1985E+05

Domanda numero 11. Il peso é 2.0

Due sfere sono cariche e le due cariche sono date in C. I centri si trovano alla distanza anch'essa data in m con l'errore. Determinare l'errore sulla forza in N.

Dati 0.67916E-04 0.25798E-04 0.11385 0.33741E-02

Risposta 72.00

Domanda numero 12. Il peso é 3.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine si trova alla distanza data, anch'essa in cm, con il suo errore, dire quanto è l'errore sull'ingrandimento della lente.

Dati 7.3306 92.631 0.13548

Risposta 0.1848E-01

Domanda numero 13. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in μ m da un protone (stessa carica, ma positiva) e poi in un secondo tempo si trova alla distanza data in nm dal protone. Determinare la velocitá che l'elettrone ha nel secondo punto sapendo che la velocitá nel primo punto era quella data in m/s.

Dati 0.16298E-05 0.36337E-02 0.18556E+08

Risposta 0.1309E+08

Domanda numero 14. Il peso é 3.0

Due resistenze hanno i valori e gli errori che vengono dati in Ω . Dire l'errore in Ω sul valore della resistenza totale, quando le due resistenze sono disposte in parallelo.

Dati 0.14139E+06 130.61 0.16202E+07 194.14

Risposta 111.7

Domanda numero 15. Il peso é 2.0

É data la distanza in m fra due punti A e B tra i quali è presente un campo elettrico costante. Sapendo che tra i due punti vi è una differenza di potenziale data in V con il suo errore, determinare l'errore sul campo elettrico in mV/m.

Dati 3.3779 595.78 0.75130

Risposta 222.4

Domanda numero 16. Il peso é 1.0

Un'onda sonora si propaga da un treno che si muove verso un ricevitore con la velocitá data in m/s e con frequenza anche essa data in Hz. Determinare la frequenza ricevuta dal ricevitore in Hz.

Dati 17.775 6954.7

Risposta 7300.

Domanda numero 17. Il peso é 1.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine è ingrandita del fattore dato, dire qual è la focale in cm della lente.

Dati 9.8635 13.737

Risposta 9.194

Domanda numero 18. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in nm da un protone (stessa carica, ma positiva) e poi in un secondo tempo si trova alla distanza data in nm dal protone con una velocitá data in m/s. Determinare la velocitá in m/s che l'elettrone aveva nel primo punto.

Dati 0.30381E-02 0.53811E-02 0.23751E+08

Risposta 0.2525E+08

Domanda numero 19. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in μ m da un protone (stessa carica, ma positiva) con una velocitá data in m/s. Dopo un certo tempo si trova in un secondo punto con la velocitá data in m/s. Determinare a che distanza dal protone in nm si trova nel secondo punto.

Risposta 0.2968E-02

Domanda numero 20. Il peso é 2.0

Un conduttore ha la resistivitá che viene data in Ω m. Esso ha la sezione che viene data in mm² con il suo errore. Dire qual è l'errore sulla resistenza del conduttore in $k\Omega$ se esso ha la lunghezza data in m.

Dati 0.13321E-06 0.71248 0.57021E-02 75.633

Risposta 0.1132E-03

Ignorare il fatto che dati **non** sono presentati con le corrette cifre significative. I numeri sono spesso in rappresentazione scientifica. Il numero di Avogadro é fissato pari a $6.023 \cdot 10^{23}$ ed é il numero di molecole nel volume di una gammomolecola. Si assuma che la densitá dell'acqua sia 1000 kg/m^3 . La costante gravitazionale è $G = 6.6726 \cdot 10^{-11} \, m^3/kgs^2$ senza errore. La costante nella legge di Coulomb è $K = 1/(4\pi\epsilon) = 1/(12.5664 \cdot 8.854210^{-12})$. Questa costante è nel SI e non ha errore. Si assuma che la velocitá della luce vale 300000 km/s. La velocitá del suono si assuma pari a 340 m/s. I risultati vanno presentati con **quattro** cifre significative (es. 1/5 = 0.2000 e non 0.2 oppure 1/3000 = 3.333E-04).

Domanda numero 1. Il peso é 3.0

Sapendo che l'obiettivo di un microscopio ha la focale data in mm e sapendo che un oggetto illuminato si trova alla distanza data in mm con il suo errore, dire l'errore sulla posizione dell'immagine.

Dati 0.11052 0.36227 0.65978E-02

Risposta 0.1271E-02

Domanda numero 2. Il peso é 0.5

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che l'immagine si forma alla distanza anch'essa data in mm, dire qual è la focale dell'obiettivo.

Dati 0.55894 0.34375

Risposta 0.2128

Domanda numero 3. Il peso é 2.0

É data la distanza in m fra due punti A e B tra i quali è presente un campo elettrico costante. Sapendo che tra i due punti vi è una differenza di potenziale data in V con il suo errore, determinare l'errore sul campo elettrico in mV/m.

Dati 4.9064 580.87 0.74880

Risposta 152.6

Domanda numero 4. Il peso é 2.0

Un conduttore ha la resistivitá che viene data in Ω m. Esso ha la sezione che viene data in mm² con il suo errore. Dire qual è l'errore sulla resistenza del conduttore in k Ω se esso ha la lunghezza data in m.

Dati 0.29478E-06 1.1893 0.62689E-02 77.770

Risposta 0.1016E-03

Domanda numero 5. Il peso é 1.0

Una lampadina avente la resistenza indicata in Ω viene alimentata con la differenza di potenziale alternata di 220 V efficaci. Sapendo che la frazione indicata della potenza viene trasformata in luce, dire qual è la potenza (W) della luce prodotta.

Dati 351.54 0.66436

Risposta 91.47

Domanda numero 6. Il peso é 2.0

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul primario ha il valore indicato con il suo errore, dire l'errore sulla differenza di potenziale sul secondario in kV.

Dati 2220.0 24600. 2304.4 3.8064

Risposta 0.4218E-01

Domanda numero 7. Il peso é 3.0

Le due cariche elettriche date in C sono disposte uniformemente su un volume sferico. Le due sfere si trovano ad una distanza data in cm. Dato il diametro delle sfere in cm determinare la forza in N che agisce fra di esse. Controllare se le sfere sono sovrapposte.

Dati 0.62717E-04 0.21873E-04 37.668 44.967

Risposta 0.4218E-01

Domanda numero 8. Il peso é 0.5

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Determinare l'induzione magnetica che produce in T quando è percorso dalla corrente data in mA.

Dati 7300.0 0.11273 363.43

Risposta 0.2957E-01

Domanda numero 9. Il peso é 2.0

Un conduttore ha la resistivitá elettrica data in Ω m. Data la sua sezione in mm² e la sua lunghezza in m con il suo errore, determinare l'errore sulla sua resistenza in k Ω .

Dati 0.29530E-06 2.3889 66.443 0.13214E-01

Risposta 0.1633E-05

Domanda numero 10. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in nm da un protone (stessa carica, ma positiva) e poi in un secondo tempo si trova alla distanza data in nm dal protone con una velocitá data in m/s. Determinare la velocitá in m/s che l'elettrone aveva nel primo punto.

Dati 0.20398E-02 0.25198E-02 0.16137E+08

Risposta 0.1755E+08

Domanda numero 11. Il peso é 1.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine si trova alla distanza data, anch'essa in cm, dire quanto è l'ingrandimento della lente.

Dati 23.139 98.777

Risposta 4.269

Domanda numero 12. Il peso é 0.5

Alla resistenza data in $k\Omega$ viene applicata la differenza di potenziale data in V. Dire la potenza dissipata in essa per effetto Joule, in W.

Dati 3.3972 967.66

Risposta 275.6

Domanda numero 13. Il peso é 1.0

Un'onda sonora si propaga da un treno che si muove verso un ricevitore con la velocitá data in m/s e con frequenza anche essa data in Hz. Determinare la frequenza ricevuta dal ricevitore in Hz.

Dati 52.274 4335.9

Risposta 4914.

Domanda numero 14. Il peso é 1.0

Due sfere sono cariche e le due cariche sono date in C. La forza che agisce fra di esse è data in N. Determinare la distanza in mm fra i centri.

Dati 0.62158E-03 0.22866E-03 17375.

Risposta 271.1

Domanda numero 15. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul primario ha il valore indicato, dire qual è la differenza di potenziale presente al secondario in kV.

Dati 2140.0 33000. 2932.2

Risposta 45.22

Domanda numero 16. Il peso é 2.0

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Conoscendo l'induzione magnetica che produce in T e la sua resistenza in Ω determinare la potenza dissipata nel solenoide in kW.

Dati 6100.0 0.65013E-01 5.2943 0.27033

Risposta 0.5451

Domanda numero 17. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in kg/s. L'altezza da cui cade l'acqua è data in m con il suo errore. La frazione di energia che viene trasformata in energia elettrica è quella indicata. Determinare l'errore sulla potenza elettrica in W prodotta dalla centrale.

Dati 181.21 132.94 0.52991 0.47792

Risposta 450.0

Domanda numero 18. Il peso é 2.0

Una carica puntiforme data in C si trova alla distanza data in m da un'altra carica data in C ed in posizione fissa. Determinare la velocitá con cui arriva la prima carica alla distanza di 1 nm dalla seconda se la sua massa é quella data in g, le due cariche sono di segno opposto e la prima carica é inizialmente ferma.

Dati 0.34219E-04 0.59010E-02 0.15639E-03 0.24860E-09

Risposta 0.6220E+12

Domanda numero 19. Il peso é 2.0

Un generatore produce la differenza di potenziale che viene data in V con il suo errore. Con la resistenza interna data in Ω , dire l'errore sulla differenza di potenziale in V agli estremi della resistenza data in Ω che viene posta in uscita.

Dati 8271.9 13.440 0.15837E+07 0.16708E+06

Risposta 1.283

Domanda numero 20. Il peso é 1.0

Un generatore produce la differenza di potenziale che viene data in V. Esso ha la resistenza interna che viene data in Ω . Dire il valore della differenza di potenziale in kV agliestremi della resistenza data in Ω che viene posta all'uscita del generatore.

Dati 5655.6 0.16282E+06 0.14257E+07

Ignorare il fatto che dati **non** sono presentati con le corrette cifre significative. I numeri sono spesso in rappresentazione scientifica. Il numero di Avogadro é fissato pari a $6.023 \cdot 10^{23}$ ed é il numero di molecole nel volume di una gammomolecola. Si assuma che la densitá dell'acqua sia 1000 kg/m^3 . La costante gravitazionale è $G = 6.6726 \cdot 10^{-11} \, m^3/kgs^2$ senza errore. La costante nella legge di Coulomb è $K = 1/(4\pi\epsilon) = 1/(12.5664 \cdot 8.854210^{-12})$. Questa costante è nel SI e non ha errore. Si assuma che la velocitá della luce vale 300000 km/s. La velocitá del suono si assuma pari a 340 m/s. I risultati vanno presentati con **quattro** cifre significative (es. 1/5 = 0.2000 e non 0.2 oppure 1/3000 = 3.333E-04).

Domanda numero 1. Il peso é 1.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine si trova alla distanza data, anch'essa in cm, dire quanto è l'ingrandimento della lente.

Dati 33.012 62.329

Risposta 1.888

Domanda numero 2. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul primario ha il valore indicato, dire qual è la differenza di potenziale presente al secondario in kV.

Dati 2360.0 29600. 1988.5

Risposta 24.94

Domanda numero 3. Il peso é 3.0

Due resistenze hanno i valori e gli errori che vengono dati in Ω . Dire l'errore in Ω sul valore della resistenza totale, quando le due resistenze sono disposte in parallelo.

Dati 0.11893E+06 158.18 0.19395E+07 105.39

Risposta 140.8

Domanda numero 4. Il peso é 1.0

Le due cariche elettriche date in C sono disposte uniformemente su due sfere. Le due sfere si trovano ad una distanza data in cm. Determinare la forza in N che agisce fra di esse.

Dati 0.80267E-04 0.22547E-04 14.420

Risposta 782.2

Domanda numero 5. Il peso é 2.0

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Conoscendo l'induzione magnetica che produce in T e la sua resistenza in Ω determinare la potenza dissipata nel solenoide in kW.

Dati 10400. 0.52309E-01 4.4374 0.41933

Domanda numero 6. Il peso é 1.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine è ingrandita del fattore dato, dire qual è la focale in cm della lente.

Dati 7.8367 14.350

Risposta 7.326

Domanda numero 7. Il peso é 2.0

Una carica puntiforme data in C si trova alla distanza data in m da un'altra carica in posizione fissa. Data la velocitá in m/s con cui arriva la prima carica alla distanza di 1 nm dalla seconda, se la sua massa é quella data in g e se le due cariche sono di segno opposto, determinare il valore in C della carica in posizione fissa.

Dati 0.55366E-04 0.22267E-02 50424. 0.22815E-09

Risposta 0.5829E-18

Domanda numero 8. Il peso é 2.0

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico uniforme dato in V/m con il suo errore. Determinare l'errore sulla differenza di potenziale in V fra i due punti.

Dati 3.7781 62.493 0.18338

Risposta 0.6928

Domanda numero 9. Il peso é 2.0

Un generatore produce la differenza di potenziale che viene data in V con il suo errore. Con la resistenza interna data in Ω , dire l'errore sulla differenza di potenziale in V agli estremi della resistenza data in Ω che viene posta in uscita.

Dati 8668.1 13.466 0.18098E+07 0.11601E+06

Risposta 0.8112

Domanda numero 10. Il peso é 2.0

Due sfere sono cariche e le due cariche sono date in C. I centri si trovano alla distanza anch'essa data in m con l'errore. Determinare l'errore sulla forza in N.

Dati 0.85723E-04 0.26064E-04 0.24627 0.21545E-02

Domanda numero 11. Il peso é 1.0

Un dispositivo elettrico viene alimentato con la differenza di potenziale indicata in V e la corrente viene anch'essa data in A. Sapendo che il dispositivo viene tenuto in funzione per il tempo dato in ore, dire qual è l'energia in J che è stata dissipata.

Dati 372.42 13.418 2.8834

Risposta 0.5187E+08

Domanda numero 12. Il peso é 0.5

La resistenza data in $k\Omega$ viene attraversata dalla corrente data in mA. Dire la potenza dissipata in essa per effetto Joule, in W.

Dati 9.7240 1290.1

Risposta 0.1618E+05

Domanda numero 13. Il peso é 0.5

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che la sua focale è quella data in mm, dire a quale distanza in mm dall'obiettivo si formerá l'immagine.

Dati 0.37926 0.10765

Risposta 0.1503

Domanda numero 14. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in μ m da un protone (stessa carica, ma positiva) e poi in un secondo tempo si trova alla distanza data in nm dal protone. Determinare la velocitá che l'elettrone ha nel secondo punto sapendo che la velocitá nel primo punto era quella data in m/s.

Dati 0.95836E-05 0.14541E-01 0.11814E+08

Risposta 0.1102E+08

Domanda numero 15. Il peso é 0.5

Quattro resistenze hanno i valori che vengono dati in Ω . Dire il valore della resistenza totale in Ω quando esse vengono dispote in parallelo.

Dati 852.98 8160.2 6406.8 10681.

Risposta 647.4

Domanda numero 16. Il peso é 1.0

Un conduttore ha la resistivitá elettrica data in Ω m. Data la sua sezione in mm² e la sua lunghezza in m, determinare la sua resistenza in k Ω .

Dati 0.11035E-06 0.56301 62.377

Risposta 0.1223E-01

Domanda numero 17. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in μ m da un protone (stessa carica, ma positiva) con una velocitá data in m/s. Dopo un certo tempo si trova in un secondo punto con la velocitá data in m/s. Determinare a che distanza dal protone in nm si trova nel secondo punto.

Dati 0.14517E-04 0.24974E+08 0.24876E+08

Risposta 0.1685E-01

Domanda numero 18. Il peso é 3.0

Un generatore produce la differenza di potenziale che viene data in V. La resistenza interna è data in Ω con il suo errore. Determinare l'errore sulla differenza di potenziale in kV agli estremi della resistenza data in Ω che viene disposta in uscita.

Dati 8715.1 0.13743E+07 1919.3 0.11693E+06

Risposta 0.8796E-03

Domanda numero 19. Il peso é 3.0

Sapendo che l'obiettivo di un microscopio ha la focale data in mm e sapendo che un oggetto illuminato si trova alla distanza data in mm con il suo errore, dire l'errore sulla posizione dell'immagine.

Dati 0.11164 0.26331 0.52629E-02

Risposta 0.2851E-02

Domanda numero 20. Il peso é 3.0

Una carica elettrica è data in C ed è disposta uniformemente su un volume sferico. Dato il raggio della sfera in cm determinare il *potenziale* in V alla distanza dal centro data in cm. *Controllare* se la distanza è maggiore o minore del raggio.

Dati -0.43747E-04 82.123 8.6337

 ${\bf Risposta}\ \hbox{-}5292.$

Ignorare il fatto che dati **non** sono presentati con le corrette cifre significative. I numeri sono spesso in rappresentazione scientifica. Il numero di Avogadro é fissato pari a $6.023 \cdot 10^{23}$ ed é il numero di molecole nel volume di una gammomolecola. Si assuma che la densitá dell'acqua sia 1000 kg/m^3 . La costante gravitazionale è $G = 6.6726 \cdot 10^{-11} \, m^3/kgs^2$ senza errore. La costante nella legge di Coulomb è $K = 1/(4\pi\epsilon) = 1/(12.5664 \cdot 8.854210^{-12})$. Questa costante è nel SI e non ha errore. Si assuma che la velocitá della luce vale 300000 km/s. La velocitá del suono si assuma pari a 340 m/s. I risultati vanno presentati con **quattro** cifre significative (es. 1/5 = 0.2000 e non 0.2 oppure 1/3000 = 3.333E-04).

Domanda numero 1. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in μ m da un protone (stessa carica, ma positiva) con una velocitá data in m/s. Dopo un certo tempo si trova in un secondo punto con la velocitá data in m/s. Determinare a che distanza dal protone in nm si trova nel secondo punto.

Dati 0.10971E-04 0.12151E+08 0.17255E+08

Risposta 0.2599E-02

Domanda numero 2. Il peso é 0.5

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che la sua focale è quella data in mm, dire a quale distanza in mm dall'obiettivo si formerá l'immagine.

Dati 0.33764 0.10881

Risposta 0.1606

Domanda numero 3. Il peso é 3.0

Un solenoide é immerso in un campo magnetico H dato in A/m disposto inizialmente lungo il suo asse. Dato il numero di spire del solenoide ed il loro raggio in cm, determinare la differenza di potenziale massima che si trova ai suoi estremi quando esso ruota con la frequnza data in Hz.

Dati 15710. 1596.9 28.944 56.687

Risposta 2955.

Domanda numero 4. Il peso é 0.5

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico costante dato in V/m. Determinare la differenza di potenziale in mV fra i due punti.

Dati 2.4598 56.953

Risposta 0.1401E+06

Domanda numero 5. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul secondario ha il valore indicato, dire qual è la differenza di potenziale applicata al primario in kV.

Dati 3160.0 37000. 9893.8

Domanda numero 6. Il peso é 1.0

Due sfere sono cariche e le due cariche sono date in C. La forza che agisce fra di esse è data in N. Determinare la distanza in mm fra i centri.

Dati 0.83240E-03 0.25696E-03 0.14896E+06

Risposta 113.6

Domanda numero 7. Il peso é 2.0

Una carica puntiforme data in C si trova alla distanza data in m da un'altra carica data in C ed in posizione fissa. Determinare la velocitá con cui arriva la prima carica alla distanza di 1 nm dalla seconda se la sua massa é quella data in g, le due cariche sono di segno opposto e la prima carica é inizialmente ferma.

Dati 0.18078E-04 0.37587E-02 0.14894E-03 0.15849E-09

Risposta 0.5526E+12

Domanda numero 8. Il peso é 1.0

Il kWh (1 kW per un'ora) è un'unitá di energia che corrisponde a 3600 kJ. In un impianto, in 24 ore viene impiegata l'energia data in kWh. Sapendo che la differenza di potenziale dell'impianto è quella data in V, dire qual è la corrente in mA che ha circolato nell'impianto.

Dati 145.95 204.35

Risposta 0.2976E+05

Domanda numero 9. Il peso é 0.5

Quattro resistenze hanno i valori che vengono dati in Ω . Dire il valore della resistenza totale in k Ω quando esse vengono dispote in serie.

Dati 1250.6 8231.8 7136.7 14891.

Risposta 31.51

Domanda numero 10. Il peso é 2.0

Alla resistenza data in $k\Omega$ viene applicata la differenza di potenziale data in V con il suo errore. Dire l'errore sulla potenza dissipata per effetto Joule in kW.

Dati 6.1553 596.54 1.8650

Risposta 0.3615E-03

Domanda numero 11. Il peso é 0.5

Alla resistenza data in $k\Omega$ viene applicata la differenza di potenziale data in V. Dire la potenza dissipata in essa per effetto Joule, in W.

Dati 2.0905 683.69

Risposta 223.6

Domanda numero 12. Il peso é 1.0

Una lampadina avente la resistenza indicata in Ω viene alimentata con la differenza di potenziale alternata di 220 V efficaci. Sapendo che la frazione indicata della potenza viene trasformata in luce, dire qual è la potenza (W) della luce prodotta.

Dati 214.98 0.49481

Risposta 111.4

Domanda numero 13. Il peso é 1.0

Un'onda sonora si propaga da un treno che si muove verso un ricevitore con la velocitá data in m/s e con frequenza anche essa data in Hz. Determinare la frequenza ricevuta dal ricevitore in Hz.

Dati 59.369 4186.1

Risposta 4808.

Domanda numero 14. Il peso é 1.0

Un conduttore ha la resistivitá elettrica data in Ω m. Data la sua sezione in mm² e la sua lunghezza in m, determinare la sua resistenza in k Ω .

Dati 0.22809E-06 2.2875 38.813

Risposta 0.3870E-02

Domanda numero 15. Il peso é 1.0

Una lampadina avente la resistenza indicata in Ω viene alimentata con la differenza di potenziale alternata di 220 V efficaci. Sapendo che la frazione indicata della potenza viene trasformata in luce, dire qual è la potenza in W che viene trasformata in calore.

Dati 381.66 0.77907

Risposta 28.02

Domanda numero 16. Il peso é 2.0

Una carica puntiforme data in C si trova alla distanza data in m da un'altra carica in posizione fissa. Data la velocitá in m/s con cui arriva la prima carica alla distanza di 1 nm dalla seconda, se la sua massa é quella data in g e se le due cariche sono di segno opposto, determinare il valore in C della carica in posizione fissa.

Dati 0.43948E-04 0.10941E-02 86907. 0.24324E-09

Risposta 0.2326E-17

Domanda numero 17. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova ad una certa distanza da un protone (stessa carica, ma positiva) con una velocitá data in m/s. Dopo un certo tempo si trova in un secondo punto alla distanza data in nm e con la velocitá data in m/s. Determinare a che distanza dal protone in nm si trovava nel primo punto.

Dati 0.18481E+08 0.59181E-02 0.11559E+08

Risposta 0.1737E-02

Domanda numero 18. Il peso é 0.5

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che l'immagine si forma alla distanza anch'essa data in mm, dire qual è la focale dell'obiettivo.

Dati 0.32724 0.30888

Risposta 0.1589

Domanda numero 19. Il peso é 2.0

É data la distanza in m
 fra due punti A e B tra i quali è presente un campo elettrico costante. Sapendo che tra i due punti vi è una differenza di potenziale data in V con il suo errore, determinare l'errore sul campo elettrico in mV/m.

Dati 2.4029 441.72 0.78560

Risposta 326.9

Domanda numero 20. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul primario ha il valore indicato, dire qual è la differenza di potenziale presente al secondario in kV.

Dati 2480.0 29400. 1867.7

Risposta 22.14

Ignorare il fatto che dati **non** sono presentati con le corrette cifre significative. I numeri sono spesso in rappresentazione scientifica. Il numero di Avogadro é fissato pari a $6.023 \cdot 10^{23}$ ed é il numero di molecole nel volume di una gammomolecola. Si assuma che la densitá dell'acqua sia 1000 kg/m^3 . La costante gravitazionale è $G = 6.6726 \cdot 10^{-11} \, m^3/kgs^2$ senza errore. La costante nella legge di Coulomb è $K = 1/(4\pi\epsilon) = 1/(12.5664 \cdot 8.854210^{-12})$. Questa costante è nel SI e non ha errore. Si assuma che la velocitá della luce vale 300000 km/s. La velocitá del suono si assuma pari a 340 m/s. I risultati vanno presentati con **quattro** cifre significative (es. 1/5 = 0.2000 e non 0.2 oppure 1/3000 = 3.333E-04).

Domanda numero 1. Il peso é 0.5

Quattro resistenze hanno i valori che vengono dati in Ω . Dire il valore della resistenza totale in k Ω quando esse vengono dispote in serie.

Dati 1110.6 11087. 5440.6 15951.

Risposta 33.59

Domanda numero 2. Il peso é 2.0

Alla resistenza data in $k\Omega$ con il suo errore, viene applicata la differenza di potenziale data in V. Dire l'errore sulla potenza dissipata per effetto Joule in mW.

Dati 3.8659 0.54759E-02 765.13

Risposta 214.5

Domanda numero 3. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in kg/s, mentre l'altezza da cui cade l'acqua è anche data in m. Sapendo che la frazione di energia che viene trasformata in energia elettrica è quella indicata, dire qual è la potenza elettrica in W prodotta dalla centrale.

Dati 70.315 83.627 0.64536

Risposta 0.3722E+05

Domanda numero 4. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in nm da un protone (stessa carica, ma positiva) e poi in un secondo tempo si trova alla distanza data in nm dal protone con una velocitá data in m/s. Determinare la velocitá in m/s che l'elettrone aveva nel primo punto.

Dati 0.21109E-02 0.10477E-01 0.16604E+08

Risposta 0.2166E+08

Domanda numero 5. Il peso é 3.0

Sapendo che l'obiettivo di un microscopio ha la focale data in mm e sapendo che un oggetto illuminato si trova alla distanza data in mm con il suo errore, dire l'errore sulla posizione dell'immagine.

Dati 0.13053 0.35101 0.80363E-02

Risposta 0.2816E-02

Domanda numero 6. Il peso é 2.0

Alla resistenza data in $k\Omega$ viene applicata la differenza di potenziale data in V con il suo errore. Dire l'errore sulla potenza dissipata per effetto Joule in kW.

Dati 6.0073 568.77 1.2005

Risposta 0.2273E-03

Domanda numero 7. Il peso é 2.0

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico uniforme dato in V/m con il suo errore. Determinare l'errore sulla differenza di potenziale in V fra i due punti.

Dati 3.8367 76.287 0.15561

Risposta 0.5970

Domanda numero 8. Il peso é 1.0

Il kWh (1 kW per un'ora) è un'unitá di energia che corrisponde a 3600 kJ. In un impianto, in 24 ore viene impiegata l'energia data in kWh. Sapendo che la differenza di potenziale dell'impianto è quella data in V, dire qual è la corrente in mA che ha circolato nell'impianto.

Dati 109.42 231.62

Risposta 0.1968E+05

Domanda numero 9. Il peso é 2.0

Due resistenza hanno i valori e gli errori che vengono dati in Ω . Dire l'errore in k Ω sul valore della resistenza totale, quando le due resistenze sono disposte in serie.

Dati 828.62 11.807 6503.3 1.4957

Risposta 0.1330E-01

Domanda numero 10. Il peso é 0.5

Alla resistenza data in $k\Omega$ viene applicata la differenza di potenziale data in V. Dire la potenza dissipata in essa per effetto Joule, in W.

Dati 6.5120 265.55

Domanda numero 11. Il peso é 0.5

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che l'immagine si forma alla distanza anch'essa data in mm, dire qual è la focale dell'obiettivo.

Dati 0.34596 0.43948

Risposta 0.1936

Domanda numero 12. Il peso é 2.0

É data la distanza in m fra due punti A e B tra i quali è presente un campo elettrico costante. Sapendo che tra i due punti vi è una differenza di potenziale data in V con il suo errore, determinare l'errore sul campo elettrico in mV/m.

Dati 1.0990 530.86 0.92546

Risposta 842.1

Domanda numero 13. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in kg/s. L'altezza da cui cade l'acqua è data in m con il suo errore. La frazione di energia che viene trasformata in energia elettrica è quella indicata. Determinare l'errore sulla potenza elettrica in W prodotta dalla centrale.

Dati 158.66 76.139 0.14513 0.44103

Risposta 99.59

Domanda numero 14. Il peso é 3.0

Un generatore produce la differenza di potenziale che viene data in V. La resistenza interna è data in Ω con il suo errore. Determinare l'errore sulla differenza di potenziale in kV agli estremi della resistenza data in Ω che viene disposta in uscita.

Dati 5167.6 0.12032E+07 1153.2 0.13580E+06

Risposta 0.4514E-03

Domanda numero 15. Il peso é 0.5

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Determinare l'induzione magnetica che produce in T quando è percorso dalla corrente data in mA.

Dati 14900. 0.12686 207.48

Risposta 0.3062E-01

Domanda numero 16. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in m³/s, mentre l'altezza da cui cade l'acqua è anche data in m. Sapendo che la frazione di energia che viene trasformata in energia elettrica è quella indicata, dire qual è la potenza elettrica in W prodotta dalla centrale.

Dati 128.83 175.90 0.52593

Risposta 0.1169E+09

Domanda numero 17. Il peso é 2.0

Due sfere sono cariche e le due cariche sono date in C. I centri si trovano alla distanza anch'essa data in m con l'errore. Determinare l'errore sulla forza in N.

Dati 0.66957E-04 0.23786E-04 0.21501 0.31207E-02

Risposta 8.987

Domanda numero 18. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul primario ha il valore indicato, dire qual è la differenza di potenziale presente al secondario in kV.

Dati 3760.0 25600. 2905.1

Risposta 19.78

Domanda numero 19. Il peso é 2.0

Un conduttore ha la resistivitá elettrica data in Ω m. Data la sua sezione in mm² e la sua lunghezza in m con il suo errore, determinare l'errore sulla sua resistenza in k Ω .

Dati 0.11834E-06 0.95281 84.422 0.14622E-01

Risposta 0.1816E-05

Domanda numero 20. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul secondario ha il valore indicato, dire qual è la differenza di potenziale applicata al primario in kV.

Dati 3840.0 28600. 5164.3

Ignorare il fatto che dati **non** sono presentati con le corrette cifre significative. I numeri sono spesso in rappresentazione scientifica. Il numero di Avogadro é fissato pari a $6.023 \cdot 10^{23}$ ed é il numero di molecole nel volume di una gammomolecola. Si assuma che la densitá dell'acqua sia 1000 kg/m^3 . La costante gravitazionale è $G = 6.6726 \cdot 10^{-11} \, m^3/kgs^2$ senza errore. La costante nella legge di Coulomb è $K = 1/(4\pi\epsilon) = 1/(12.5664 \cdot 8.854210^{-12})$. Questa costante è nel SI e non ha errore. Si assuma che la velocitá della luce vale 300000 km/s. La velocitá del suono si assuma pari a 340 m/s. I risultati vanno presentati con **quattro** cifre significative (es. 1/5 = 0.2000 e non 0.2 oppure 1/3000 = 3.333E-04).

Domanda numero 1. Il peso é 2.0

Un conduttore ha la resistivitá che viene data in Ω m. Esso ha la sezione che viene data in mm² con il suo errore. Dire qual è l'errore sulla resistenza del conduttore in $k\Omega$ se esso ha la lunghezza data in m.

0.96320E-02 50.289

Dati 0.14207E-06 1.1692

Risposta 0.5034E-04

Domanda numero 2. Il peso é 2.0

La resistenza data in Ω con il suo errore, viene attraversata dalla corrente data in A. Dire l'errore sulla potenza dissipata in kW per effetto Joule.

Dati 85.410 0.14515E-01 18.424

Risposta 0.4927E-02

Domanda numero 3. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul secondario ha il valore indicato, dire qual è la differenza di potenziale applicata al primario in kV.

Dati 3120.0 38800. 6241.8

Risposta 0.5019

Domanda numero 4. Il peso é 2.0

Un conduttore ha la resistivitá elettrica data in Ω m. Data la sua sezione in mm² e la sua lunghezza in m con il suo errore, determinare l'errore sulla sua resistenza in k Ω .

Dati 0.11649E-06 2.4036 94.110 0.15305E-01

Risposta 0.7418E-06

Domanda numero 5. Il peso é 0.5

Quattro resistenze hanno i valori che vengono dati in Ω . Dire il valore della resistenza totale in Ω quando esse vengono dispote in parallelo.

Dati 1111.6 8740.2 8677.5 10118.

Risposta 814.3

Domanda numero 6. Il peso é 3.0

Un solenoide é immerso in un campo magnetico H dato in A/m disposto inizialmente lungo il suo asse. Dato il numero di spire del solenoide ed il loro raggio in cm, determinare la differenza di potenziale massima che si trova ai suoi estremi quando esso ruota con la frequnza data in Hz.

Dati 33790. 1533.5 21.579 21.714

Risposta 1300.

Domanda numero 7. Il peso é 3.0

Una centrale idroelettrica deve produrre la potenza elettrica indicata in MW. Sapendo che l'altezza della caduta d'acqua è quella indicata in m e che la frazione di energia trasformata in energia elettrica è quella indicata, determinare il flussod'acqua in m^3/s necessario al funzionamento della centrale.

Dati 95.651 173.54 0.44805

Risposta 125.4

Domanda numero 8. Il peso é 2.0

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico uniforme dato in V/m con il suo errore. Determinare l'errore sulla differenza di potenziale in V fra i due punti.

Dati 4.6614 74.850 0.15497

Risposta 0.7223

Domanda numero 9. Il peso é 2.0

Alla resistenza data in $k\Omega$ viene applicata la differenza di potenziale data in V con il suo errore. Dire l'errore sulla potenza dissipata per effetto Joule in kW.

Dati 7.6352 487.43 1.3230

Risposta 0.1689E-03

Domanda numero 10. Il peso é 1.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine è ingrandita del fattore dato, dire qual è la focale in cm della lente.

Dati 9.4804 19.734

Domanda numero 11. Il peso é 3.0

Le due cariche elettriche date in C sono disposte uniformemente su un volume sferico. Le due sfere si trovano ad una distanza data in cm. Dato il diametro delle sfere in cm determinare la forza in N che agisce fra di esse. Controllare se le sfere sono sovrapposte.

Dati 0.65749E-04 0.26779E-04 12.443 66.907

Risposta 9.023

Domanda numero 12. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in μ m da un protone (stessa carica, ma positiva) con una velocitá data in m/s. Dopo un certo tempo si trova in un secondo punto con la velocitá data in m/s. Determinare a che distanza dal protone in nm si trova nel secondo punto.

Dati 0.84918E-06 0.27984E+08 0.14521E+08

Risposta 0.1714E-01

Domanda numero 13. Il peso é 1.0

Due sfere sono cariche e le due cariche sono date in C. La forza che agisce fra di esse è data in N. Determinare la distanza in mm fra i centri.

Dati 0.63192E-03 0.27358E-03 66906.

Risposta 152.4

Domanda numero 14. Il peso é 3.0

Una carica elettrica è data in C ed è disposta uniformemente su un volume sferico. Dato il raggio della sfera in cm determinare il *potenziale* in V alla distanza dal centro data in cm. *Controllare* se la distanza è maggiore o minore del raggio.

Dati -0.57138E-04 49.114 170.29

Risposta 152.4

Domanda numero 15. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in m^3/s , mentre l'altezza da cui cade l'acqua è anche data in m. Sapendo che la frazione di energia che viene trasformata in energia elettrica è quella indicata, dire qual è la potenza elettrica in W prodotta dalla centrale.

Dati 139.40 81.428 0.75024

Risposta 0.8351E+08

Domanda numero 16. Il peso é 1.0

Il kWh (1 kW per un'ora) è un'unitá di energia che corrisponde a 3600 kJ. In un impianto, in 24 ore viene impiegata l'energia data in kWh. Sapendo che la differenza di potenziale dell'impianto è quella data in V, dire qual è la corrente in mA che ha circolato nell'impianto.

Dati 65.199 125.68

Risposta 0.2162E+05

Domanda numero 17. Il peso é 1.0

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico costante. Sapendo che tra i due punti vi è una differenza di potenziale data in V, determinare il campo in mV/m.

Dati 4.6007 393.87

Risposta 0.8561E+05

Domanda numero 18. Il peso é 1.0

Un conduttore ha la resistivitá elettrica data in Ω m. Data la sua sezione in mm² e la sua lunghezza in m, determinare la sua resistenza in k Ω .

Dati 0.99813E-07 1.3569 64.416

Risposta 0.4738E-02

Domanda numero 19. Il peso é 0.5

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico costante dato in V/m. Determinare la differenza di potenziale in mV fra i due punti.

Dati 2.7224 73.255

Risposta 0.1994E+06

Domanda numero 20. Il peso é 0.5

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Determinare l'induzione magnetica che produce in T quando è percorso dalla corrente data in mA.

Dati 12200. 0.10952 1082.5

Ignorare il fatto che dati **non** sono presentati con le corrette cifre significative. I numeri sono spesso in rappresentazione scientifica. Il numero di Avogadro é fissato pari a $6.023 \cdot 10^{23}$ ed é il numero di molecole nel volume di una gammomolecola. Si assuma che la densitá dell'acqua sia 1000 kg/m^3 . La costante gravitazionale è $G = 6.6726 \cdot 10^{-11} \, m^3/kgs^2$ senza errore. La costante nella legge di Coulomb è $K = 1/(4\pi\epsilon) = 1/(12.5664 \cdot 8.854210^{-12})$. Questa costante è nel SI e non ha errore. Si assuma che la velocitá della luce vale 300000 km/s. La velocitá del suono si assuma pari a 340 m/s. I risultati vanno presentati con **quattro** cifre significative (es. 1/5 = 0.2000 e non 0.2 oppure 1/3000 = 3.333E-04).

Domanda numero 1. Il peso é 1.0

Una lampadina avente la resistenza indicata in Ω viene alimentata con la differenza di potenziale alternata di 220 V efficaci. Sapendo che la frazione indicata della potenza viene trasformata in luce, dire qual è la potenza in W che viene trasformata in calore.

Dati 209.12 0.71232

Risposta 66.58

Domanda numero 2. Il peso é 2.0

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Conoscendo l'induzione magnetica che produce in T e la sua resistenza in Ω determinare la potenza dissipata nel solenoide in kW.

Dati 14300. 0.94620E-01 18.021 0.14940

Risposta 1.345

Domanda numero 3. Il peso é 2.0

Una carica puntiforme data in C si trova alla distanza data in m da un'altra carica data in C ed in posizione fissa. Determinare la velocitá con cui arriva la prima carica alla distanza di 1 nm dalla seconda se la sua massa é quella data in g, le due cariche sono di segno opposto e la prima carica é inizialmente ferma.

Dati 0.18009E-04 0.12484E-02 0.61749E-04 0.37451E-09

Risposta 0.2310E+12

Domanda numero 4. Il peso é 1.0

Un conduttore ha la resistivitá elettrica data in Ω m. Data la sua sezione in mm² e la sua lunghezza in m, determinare la sua resistenza in k Ω .

Dati 0.25701E-06 2.0197 33.084

Risposta 0.4210E-02

Domanda numero 5. Il peso é 1.0

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che la focale è quella data in mm, dire quanto è ingrandita l'immagine prodotta.

Dati 0.32754 0.12902

Domanda numero 6. Il peso é 3.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine si trova alla distanza data, anch'essa in cm, con il suo errore, dire quanto è l'errore sull'ingrandimento della lente.

Dati 7.9984 79.710 0.18341

Risposta 0.2293E-01

Domanda numero 7. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in kg/s. L'altezza da cui cade l'acqua è data in m con il suo errore. La frazione di energia che viene trasformata in energia elettrica è quella indicata. Determinare l'errore sulla potenza elettrica in W prodotta dalla centrale.

Dati 153.97 98.308 0.39550 0.7257

Risposta 433.4

Domanda numero 8. Il peso é 2.0

Un conduttore ha la resistivitá elettrica data in Ω m. Data la sua sezione in mm² e la sua lunghezza in m con il suo errore, determinare l'errore sulla sua resistenza in k Ω .

Dati 0.99892E-07 2.4188 105.99 0.17089E-01

Risposta 0.7058E-06

Domanda numero 9. Il peso é 2.0

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul primario ha il valore indicato con il suo errore, dire l'errore sulla differenza di potenziale sul secondario in kV.

Dati 3300.0 28000. 2254.8 2.8907

Risposta 0.2453E-01

Domanda numero 10. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul secondario ha il valore indicato, dire qual è la differenza di potenziale applicata al primario in kV.

Dati 2400.0 29400. 8331.3

Domanda numero 11. Il peso é 1.0

Una lampadina avente la resistenza indicata in Ω viene alimentata con la differenza di potenziale alternata di 220 V efficaci. Sapendo che la frazione indicata della potenza viene trasformata in luce, dire qual è la potenza (W) della luce prodotta.

Dati 209.25 0.23545

Risposta 54.46

Domanda numero 12. Il peso é 2.0

É data la distanza in m fra due punti A e B tra i quali è presente un campo elettrico costante. Sapendo che tra i due punti vi è una differenza di potenziale data in V con il suo errore, determinare l'errore sul campo elettrico in mV/m.

Dati 4.0485 383.21 0.58779

Risposta 145.2

Domanda numero 13. Il peso é 1.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine si trova alla distanza data, anch'essa in cm, dire quanto è l'ingrandimento della lente.

Dati 31.231 50.973

Risposta 1.632

Domanda numero 14. Il peso é 0.5

Quattro resistenze hanno i valori che vengono dati in Ω . Dire il valore della resistenza totale in Ω quando esse vengono dispote in parallelo.

Dati 876.52 15292. 7231.2 12160.

Risposta 700.9

Domanda numero 15. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in kg/s, mentre l'altezza da cui cade l'acqua è anche data in m. Sapendo che la frazione di energia che viene trasformata in energia elettrica è quella indicata, dire qual è la potenza elettrica in W prodotta dalla centrale.

Dati 185.83 156.75 0.73461

Risposta 0.2098E+06

Domanda numero 16. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul primario ha il valore indicato, dire qual è la differenza di potenziale presente al secondario in kV.

Dati 3400.0 26000. 2978.1

Risposta 22.77

Domanda numero 17. Il peso é 1.0

Le due cariche elettriche date in C sono disposte uniformemente su due sfere. Le due sfere si trovano ad una distanza data in cm. Determinare la forza in N che agisce fra di esse.

Dati 0.86204E-04 0.25980E-04 25.355

Risposta 313.1

Domanda numero 18. Il peso é 0.5

Alla resistenza data in $k\Omega$ viene applicata la differenza di potenziale data in V. Dire la potenza dissipata in essa per effetto Joule, in W.

Dati 2.6530 1001.6

Risposta 378.1

Domanda numero 19. Il peso é 0.5

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che l'immagine si forma alla distanza anch'essa data in mm, dire qual è la focale dell'obiettivo.

Dati 0.47211 0.25564

Risposta 0.1658

Domanda numero 20. Il peso é 2.0

Un conduttore ha la resistivitá che viene data in Ω m. Esso ha la sezione che viene data in mm² con il suo errore. Dire qual è l'errore sulla resistenza del conduttore in k Ω se esso ha la lunghezza data in m.

Dati 0.27567E-06 2.1666 0.28891E-02 63.238

Risposta 0.1073E-04

Ignorare il fatto che dati **non** sono presentati con le corrette cifre significative. I numeri sono spesso in rappresentazione scientifica. Il numero di Avogadro é fissato pari a $6.023 \cdot 10^{23}$ ed é il numero di molecole nel volume di una gammomolecola. Si assuma che la densitá dell'acqua sia 1000 kg/m^3 . La costante gravitazionale è $G = 6.6726 \cdot 10^{-11} \, m^3/kgs^2$ senza errore. La costante nella legge di Coulomb è $K = 1/(4\pi\epsilon) = 1/(12.5664 \cdot 8.854210^{-12})$. Questa costante è nel SI e non ha errore. Si assuma che la velocitá della luce vale 300000 km/s. La velocitá del suono si assuma pari a 340 m/s. I risultati vanno presentati con **quattro** cifre significative (es. 1/5 = 0.2000 e non 0.2 oppure 1/3000 = 3.333E-04).

Domanda numero 1. Il peso é 3.0

Una carica elettrica è data in C ed è disposta uniformemente su un volume sferico. Dato il raggio della sfera in cm determinare il *potenziale* in V alla distanza dal centro data in cm. *Controllare* se la distanza è maggiore o minore del raggio.

Dati -0.36888E-04 67.366 117.70

Risposta 0.1073E-04

Domanda numero 2. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul primario ha il valore indicato, dire qual è la differenza di potenziale presente al secondario in kV.

Dati 3820.0 24200. 2967.5

Risposta 18.80

Domanda numero 3. Il peso é 2.0

Due sfere sono cariche e le due cariche sono date in C. I centri si trovano alla distanza anch'essa data in m con l'errore. Determinare l'errore sulla forza in N.

Dati 0.78809E-04 0.25929E-04 0.12945 0.28970E-02

Risposta 49.05

Domanda numero 4. Il peso é 2.0

La resistenza data in Ω viene attraversata dalla corrente data in A con il suo errore. Dire l'errore sulla potenza dissipata in kW per effetto Joule.

Dati 29.577 18.869 0.16928

Risposta 0.1889

Domanda numero 5. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in μ m da un protone (stessa carica, ma positiva) con una velocitá data in m/s. Dopo un certo tempo si trova in un secondo punto con la velocitá data in m/s. Determinare a che distanza dal protone in nm si trova nel secondo punto.

Dati 0.10650E-04 0.15126E+08 0.16278E+08

Risposta 0.6073E-02

Domanda numero 6. Il peso é 1.0

Un generatore produce la differenza di potenziale che viene data in V. Esso ha la resistenza interna che viene data in Ω . Dire il valore della differenza di potenziale in kV agliestremi della resistenza data in Ω che viene posta all'uscita del generatore.

Dati 8710.9 0.17674E+06 0.19125E+07

Risposta 7.974

Domanda numero 7. Il peso é 1.0

Le due cariche elettriche date in C sono disposte uniformemente su due sfere. Le due sfere si trovano ad una distanza data in cm. Determinare la forza in N che agisce fra di esse.

Dati 0.79952E-04 0.26675E-04 24.812

Risposta 311.4

Domanda numero 8. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in kg/s. L'altezza da cui cade l'acqua è data in m con il suo errore. La frazione di energia che viene trasformata in energia elettrica è quella indicata. Determinare l'errore sulla potenza elettrica in W prodotta dalla centrale.

Dati 187.28 115.78 0.15153 0.40973

Risposta 114.0

Domanda numero 9. Il peso é 3.0

Un solenoide é immerso in un campo magnetico H dato in A/m disposto inizialmente lungo il suo asse. Dato il numero di spire del solenoide ed il loro raggio in cm, determinare la differenza di potenziale massima che si trova ai suoi estremi quando esso ruota con la frequenza data in Hz.

Dati 8170.9 1435.3 48.759 68.992

Risposta 4771.

Domanda numero 10. Il peso é 3.0

Una centrale idroelettrica deve produrre la potenza elettrica indicata in MW. Sapendo che l'altezza della caduta d'acqua è quella indicata in m e che la frazione di energia trasformata in energia elettrica è quella indicata, determinare il flussod'acqua in m³/s necessario al funzionamento della centrale.

Dati 129.71 93.903 0.67442

Domanda numero 11. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in nm da un protone (stessa carica, ma positiva) e poi in un secondo tempo si trova alla distanza data in nm dal protone con una velocitá data in m/s. Determinare la velocitá in m/s che l'elettrone aveva nel primo punto.

Dati 0.10961E-02 0.42515E-02 0.11374E+08

Risposta 0.2181E+08

Domanda numero 12. Il peso é 1.0

Una lampadina avente la resistenza indicata in Ω viene alimentata con la differenza di potenziale alternata di 220 V efficaci. Sapendo che la frazione indicata della potenza viene trasformata in luce, dire qual è la potenza in W che viene trasformata in calore.

Dati 359.07 0.69150

Risposta 41.58

Domanda numero 13. Il peso é 1.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine si trova alla distanza data, anch'essa in cm, dire quanto è l'ingrandimento della lente.

Dati 24.871 76.650

Risposta 3.082

Domanda numero 14. Il peso é 2.0

Alla resistenza data in $k\Omega$ con il suo errore, viene applicata la differenza di potenziale data in V. Dire l'errore sulla potenza dissipata per effetto Joule in mW.

Dati 7.7143 0.62376E-02 909.80

Risposta 86.76

Domanda numero 15. Il peso é 3.0

Le due cariche elettriche date in C sono disposte uniformemente su un volume sferico. Le due sfere si trovano ad una distanza data in cm. Dato il diametro delle sfere in cm determinare la forza in N che agisce fra di esse. Controllare se le sfere sono sovrapposte.

Dati 0.66111E-04 0.20957E-04 7.7613 71.751

Risposta 86.76

Domanda numero 16. Il peso é 2.0

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico uniforme dato in V/m con il suo errore. Determinare l'errore sulla differenza di potenziale in V fra i due punti.

Dati 3.7966 67.094 0.19687

Risposta 0.7474

Domanda numero 17. Il peso é 1.0

Due conduttori hanno la stessa resistivitá che viene data in Ω m. Essi hanno anche la stessa sezione che viene data in mm². Essi hanno le lunghezze indicate in m. Dire qual è la resistenza totale in k Ω quando essi vengono collegati con le due estremitá in comune (parallelo).

Dati 0.27019E-06 2.4028 29.262 89.627

Risposta 0.2481E-02

Domanda numero 18. Il peso é 1.0

Un'onda elettromagnetica si propaga da un aereo che si muove verso un ricevitore con la velocitá data in m/s e con frequenza anche essa data in Hz. Determinare la frequenza ricevuta dal ricevitore in Hz.

Dati 39.572 0.57771E+09

Risposta 0.5777E+09

Domanda numero 19. Il peso é 0.5

La resistenza data in $k\Omega$ viene attraversata dalla corrente data in mA. Dire la potenza dissipata in essa per effetto Joule, in W.

Dati 9.4380 5000.5

Risposta 0.2360E+06

Domanda numero 20. Il peso é 1.0

Un dispositivo elettrico viene alimentato con la differenza di potenziale indicata in V e la corrente viene anch'essa data in A. Sapendo che il dispositivo viene tenuto in funzione per il tempo dato in ore, dire qual è l'energia in J che è stata dissipata.

Dati 369.14 23.505 2.3768

Risposta 0.7424E+08

Domanda numero 1. Il peso é 2.0

Una carica puntiforme data in C si trova alla distanza data in m da un'altra carica in posizione fissa. Data la velocitá in m/s con cui arriva la prima carica alla distanza di 1 nm dalla seconda, se la sua massa é quella data in g e se le due cariche sono di segno opposto, determinare il valore in C della carica in posizione fissa.

Dati 0.19059E-04 0.24275E-02 54998. 0.30076E-09

Risposta 0.2656E-17

Domanda numero 2. Il peso é 3.0

Un generatore produce la differenza di potenziale che viene data in V. La resistenza interna è data in Ω con il suo errore. Determinare l'errore sulla differenza di potenziale in kV agli estremi della resistenza data in Ω che viene disposta in uscita.

Dati 8437.2 0.19433E+07 1071.8 0.17133E+06

Risposta 0.3465E-03

Domanda numero 3. Il peso é 1.0

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che la focale è quella data in mm, dire quanto è ingrandita l'immagine prodotta.

Dati 0.33536 0.14587

Risposta 0.7698

Domanda numero 4. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in μ m da un protone (stessa carica, ma positiva) e poi in un secondo tempo si trova alla distanza data in nm dal protone. Determinare la velocitá che l'elettrone ha nel secondo punto sapendo che la velocitá nel primo punto era quella data in m/s.

Dati 0.31590E-05 0.12860E-01 0.16126E+08

Risposta 0.1175E+08

Domanda numero 5. Il peso é 3.0

Due resistenze hanno i valori e gli errori che vengono dati in Ω . Dire l'errore in Ω sul valore della resistenza totale, quando le due resistenze sono disposte in parallelo.

Dati 0.14173E+06 87.583 0.18257E+07 187.58

Risposta 76.39

Domanda numero 6. Il peso é 3.0

Sapendo che l'obiettivo di un microscopio ha la focale data in mm e sapendo che un oggetto illuminato si trova alla distanza data in mm con il suo errore, dire l'errore sulla posizione dell'immagine.

Dati 0.12030 0.27592 0.79863E-02

Risposta 0.4772E-02

Domanda numero 7. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul primario ha il valore indicato, dire qual è la differenza di potenziale presente al secondario in kV.

Dati 2980.0 36800. 2440.4

Risposta 30.14

Domanda numero 8. Il peso é 2.0

Un conduttore ha la resistivitá elettrica data in Ω m. Data la sua sezione in mm² e la sua lunghezza in m con il suo errore, determinare l'errore sulla sua resistenza in k Ω .

Dati 0.25959E-06 1.8723 76.591 0.10927E-01

Risposta 0.1515E-05

Domanda numero 9. Il peso é 0.5

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico costante dato in V/m. Determinare la differenza di potenziale in mV fra i due punti.

Dati 2.7895 66.609

Risposta 0.1858E+06

Domanda numero 10. Il peso é 0.5

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Determinare l'induzione magnetica che produce in T quando è percorso dalla corrente data in mA.

Dati 10300. 0.13158 484.78

Risposta 0.4769E-01

Domanda numero 11. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul secondario ha il valore indicato, dire qual è la differenza di potenziale applicata al primario in kV.

Dati 2500.0 35000. 9410.5

Risposta 0.6722

Domanda numero 12. Il peso é 2.0

Alla resistenza data in $k\Omega$ con il suo errore, viene applicata la differenza di potenziale data in V. Dire l'errore sulla potenza dissipata per effetto Joule in mW.

Dati 4.2156 0.58521E-02 921.30

Risposta 279.5

Domanda numero 13. Il peso é 1.0

Un'onda sonora si propaga da un treno che si muove verso un ricevitore con la velocitá data in m/s e con frequenza anche essa data in Hz. Determinare la frequenza ricevuta dal ricevitore in Hz.

Dati 49.115 5783.0

Risposta 6513.

Domanda numero 14. Il peso é 0.5

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Determinare l'induzione magnetica che produce in T quando è nota la sua resistenza in Ω e la differenza di potenziale applicata in kV.

Dati 12400. 0.54156E-01 0.49050 0.19347

Risposta 113.5

Domanda numero 15. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in m^3/s , mentre l'altezza da cui cade l'acqua è anche data in m. Sapendo che la frazione di energia che viene trasformata in energia elettrica è quella indicata, dire qual è la potenza elettrica in W prodotta dalla centrale.

Dati 89.415 144.57 0.68064

Risposta 0.8629E+08

Domanda numero 16. Il peso é 1.0

Una lampadina avente la resistenza indicata in Ω viene alimentata con la differenza di potenziale alternata di 220 V efficaci. Sapendo che la frazione indicata della potenza viene trasformata in luce, dire qual è la potenza in W che viene trasformata in calore.

Dati 222.38 0.35582

Risposta 140.2

Domanda numero 17. Il peso é 1.0

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico costante. Sapendo che tra i due punti vi è una differenza di potenziale data in V, determinare il campo in mV/m.

Dati 3.1505 327.65

Risposta 0.1040E+06

Domanda numero 18. Il peso é 2.0

Alla resistenza data in $k\Omega$ viene applicata la differenza di potenziale data in V con il suo errore. Dire l'errore sulla potenza dissipata per effetto Joule in kW.

Dati 8.6210 143.84 1.0910

Risposta 0.3641E-04

Domanda numero 19. Il peso é 1.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine è ingrandita del fattore dato, dire qual è la focale in cm della lente.

Dati 6.6046 18.964

Risposta 6.274

Domanda numero 20. Il peso é 1.0

Un conduttore ha la resistivitá elettrica data in Ω m. Data la sua sezione in mm² e la sua lunghezza in m, determinare la sua resistenza in k Ω .

Dati 0.19049E-07 1.1841 61.941

Risposta 0.9965E-03

Domanda numero 1. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul primario ha il valore indicato, dire qual è la differenza di potenziale presente al secondario in kV.

Dati 3560.0 32600. 2501.2

Risposta 22.90

Domanda numero 2. Il peso é 0.5

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Determinare l'induzione magnetica che produce in T quando è nota la sua resistenza in Ω e la differenza di potenziale applicata in kV.

Dati 13700. 0.93291E-01 0.48072 0.21733

Risposta 83.43

Domanda numero 3. Il peso é 2.0

Un conduttore ha la resistivitá che viene data in Ω m. Esso ha la sezione che viene data in mm² e la lunghezza data in m con il suo errore. Dire qual è l'errore sulla resistenza del conduttore in k Ω .

Dati 0.11613E-06 0.61362 68.868 0.37947

Risposta 0.7181E-04

Domanda numero 4. Il peso é 1.0

Un'onda elettromagnetica si propaga da un aereo che si muove verso un ricevitore con la velocitá data in m/s e con frequenza anche essa data in Hz. Determinare la frequenza ricevuta dal ricevitore in Hz.

Dati 220.08 0.55886E+09

Risposta 0.5589E+09

Domanda numero 5. Il peso é 1.0

Due conduttori hanno la stessa resistivitá che viene data in Ω m. Essi hanno anche la stessa sezione che viene data in mm². Essi hanno le lunghezze indicate in m. Dire qual è la resistenza totale in k Ω quando essi vengono collegati con le due estremitá in comune (parallelo).

Dati 0.11011E-06 1.1360 45.417 108.42

Risposta 0.3103E-02

Domanda numero 6. Il peso é 2.0

Un conduttore ha la resistivitá elettrica data in Ω m. Data la sua sezione in mm² e la sua lunghezza in m con il suo errore, determinare l'errore sulla sua resistenza in k Ω .

Dati 0.24665E-06 1.4031 42.539 0.14884E-01

Risposta 0.2616E-05

Domanda numero 7. Il peso é 0.5

Quattro resistenze hanno i valori che vengono dati in Ω . Dire il valore della resistenza totale in Ω quando esse vengono dispote in parallelo.

Dati 1497.6 8578.9 8004.1 13219.

Risposta 1015.

Domanda numero 8. Il peso é 2.0

Una carica puntiforme data in C si trova alla distanza data in m da un'altra carica in posizione fissa. Data la velocitá in m/s con cui arriva la prima carica alla distanza di 1 nm dalla seconda, se la sua massa é quella data in g e se le due cariche sono di segno opposto, determinare il valore in C della carica in posizione fissa.

Dati 0.30721E-04 0.45234E-02 92443. 0.21093E-09

Risposta 0.3264E-17

Domanda numero 9. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in m³/s, mentre l'altezza da cui cade l'acqua è anche data in m. Sapendo che la frazione di energia che viene trasformata in energia elettrica è quella indicata, dire qual è la potenza elettrica in W prodotta dalla centrale.

Dati 99.429 160.14 0.61705

Risposta 0.9635E+08

Domanda numero 10. Il peso é 1.0

Una lampadina avente la resistenza indicata in Ω viene alimentata con la differenza di potenziale alternata di 220 V efficaci. Sapendo che la frazione indicata della potenza viene trasformata in luce, dire qual è la potenza (W) della luce prodotta.

Dati 394.67 0.65202

Risposta 79.96

Domanda numero 11. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul secondario ha il valore indicato, dire qual è la differenza di potenziale applicata al primario in kV.

Dati 3720.0 21600. 6570.3

Risposta 1.132

Domanda numero 12. Il peso é 1.0

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico costante. Sapendo che tra i due punti vi è una differenza di potenziale data in V, determinare il campo in mV/m.

Dati 5.6865 406.51

Risposta 0.7149E+05

Domanda numero 13. Il peso é 0.5

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Determinare l'induzione magnetica che produce in T quando è percorso dalla corrente data in mA.

Dati 13400. 0.68501E-01 634.35

Risposta 0.1559

Domanda numero 14. Il peso é 2.0

Un generatore produce la differenza di potenziale che viene data in V con il suo errore. Con la resistenza interna data in Ω , dire l'errore sulla differenza di potenziale in V agli estremi della resistenza data in Ω che viene posta in uscita.

Dati 6949.2 13.862 0.10205E+07 0.15923E+06

Risposta 1.871

Domanda numero 15. Il peso é 0.5

La resistenza data in $k\Omega$ viene attraversata dalla corrente data in mA. Dire la potenza dissipata in essa per effetto Joule, in W.

Dati 5.2588 825.28

Risposta 3582.

Domanda numero 16. Il peso é 1.0

Un conduttore ha la resistivitá elettrica data in Ω m. Data la sua sezione in mm² e la sua lunghezza in m, determinare la sua resistenza in k Ω .

Dati 0.30172E-06 2.3300 53.728

Risposta 0.6957E-02

Domanda numero 17. Il peso é 2.0

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Conoscendo l'induzione magnetica che produce in T e la sua resistenza in Ω determinare la potenza dissipata nel solenoide in kW.

Dati 14200. 0.76831E-01 7.9942 0.48839

Risposta 0.5786

Domanda numero 18. Il peso é 3.0

Una centrale idroelettrica deve produrre la potenza elettrica indicata in MW. Sapendo che l'altezza della caduta d'acqua è quella indicata in m e che la frazione di energia trasformata in energia elettrica è quella indicata, determinare il flussod'acqua in m^3/s necessario al funzionamento della centrale.

Dati 87.066 149.36 0.79890

Risposta 74.41

Domanda numero 19. Il peso é 3.0

Sapendo che l'obiettivo di un microscopio ha la focale data in mm e sapendo che un oggetto illuminato si trova alla distanza data in mm con il suo errore, dire l'errore sulla posizione dell'immagine.

Dati 0.10074 0.35602 0.72369E-02

Risposta 0.1127E-02

Domanda numero 20. Il peso é 1.0

Una lampadina avente la resistenza indicata in Ω viene alimentata con la differenza di potenziale alternata di 220 V efficaci. Sapendo che la frazione indicata della potenza viene trasformata in luce, dire qual è la potenza in W che viene trasformata in calore.

Dati 338.23 0.67036

Risposta 47.17

Domanda numero 1. Il peso é 2.0

Un conduttore ha la resistivitá che viene data in Ω m. Esso ha la sezione che viene data in mm² e la lunghezza data in m con il suo errore. Dire qual è l'errore sulla resistenza del conduttore in k Ω .

Dati 0.14253E-06 2.2643 14.314 0.45095

Risposta 0.2839E-04

Domanda numero 2. Il peso é 2.0

La resistenza data in Ω con il suo errore, viene attraversata dalla corrente data in A. Dire l'errore sulla potenza dissipata in kW per effetto Joule.

Dati 78.089 0.13497E-01 22.718

Risposta 0.6966E-02

Domanda numero 3. Il peso é 0.5

Quattro resistenze hanno i valori che vengono dati in Ω . Dire il valore della resistenza totale in k Ω quando esse vengono dispote in serie.

Dati 876.31 9931.0 7911.4 18873.

Risposta 37.59

Domanda numero 4. Il peso é 3.0

Una carica elettrica è data in C ed è disposta uniformemente su un volume sferico. Dato il raggio della sfera in cm determinare il *potenziale* in V alla distanza dal centro data in cm. *Controllare* se la distanza è maggiore o minore del raggio.

Dati -0.43742E-04 46.384 123.59

Risposta 37.59

Domanda numero 5. Il peso é 0.5

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico costante dato in V/m. Determinare la differenza di potenziale in mV fra i due punti.

Dati 3.7066 72.433

Risposta 0.2685E+06

Domanda numero 6. Il peso é 3.0

Un generatore produce la differenza di potenziale che viene data in V. La resistenza interna è data in Ω con il suo errore. Determinare l'errore sulla differenza di potenziale in kV agli estremi della resistenza data in Ω che viene disposta in uscita.

Dati 7288.0 0.12569E+07 1279.1 0.13390E+06

Risposta 0.6453E-03

Domanda numero 7. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in kg/s. L'altezza da cui cade l'acqua è data in m con il suo errore. La frazione di energia che viene trasformata in energia elettrica è quella indicata. Determinare l'errore sulla potenza elettrica in W prodotta dalla centrale.

Dati 184.65 74.448 0.46493 0.43661

Risposta 367.6

Domanda numero 8. Il peso é 2.0

Un generatore produce la differenza di potenziale che viene data in V con il suo errore. Con la resistenza interna data in Ω , dire l'errore sulla differenza di potenziale in V agli estremi della resistenza data in Ω che viene posta in uscita.

Dati 5474.3 14.176 0.17336E+07 0.14452E+06

Risposta 1.091

Domanda numero 9. Il peso é 2.0

Una carica puntiforme data in C si trova alla distanza data in m da un'altra carica in posizione fissa. Data la velocitá in m/s con cui arriva la prima carica alla distanza di 1 nm dalla seconda, se la sua massa é quella data in g e se le due cariche sono di segno opposto, determinare il valore in C della carica in posizione fissa.

Dati 0.55075E-04 0.42379E-02 68949. 0.44235E-09

Risposta 0.2124E-17

Domanda numero 10. Il peso é 2.0

Una carica puntiforme data in C si trova alla distanza data in m da un'altra carica data in C ed in posizione fissa. Determinare la velocitá con cui arriva la prima carica alla distanza di 1 nm dalla seconda se la sua massa é quella data in g, le due cariche sono di segno opposto e la prima carica é inizialmente ferma.

Dati 0.20301E-04 0.15443E-02 0.22069E-03 0.43527E-09

Risposta 0.4301E+12

Domanda numero 11. Il peso é 1.0

Un dispositivo elettrico viene alimentato con la differenza di potenziale indicata in V e la corrente viene anch'essa data in A. Sapendo che il dispositivo viene tenuto in funzione per il tempo dato in ore, dire qual è l'energia in J che è stata dissipata.

Dati 226.37 22.133 2.2741

Risposta 0.4102E+08

Domanda numero 12. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in μ m da un protone (stessa carica, ma positiva) e poi in un secondo tempo si trova alla distanza data in nm dal protone. Determinare la velocitá che l'elettrone ha nel secondo punto sapendo che la velocitá nel primo punto era quella data in m/s.

Dati 0.12937E-05 0.49075E-02 0.21492E+08

Risposta 0.1307E+08

Domanda numero 13. Il peso é 1.0

Il kWh (1 kW per un'ora) è un'unitá di energia che corrisponde a 3600 kJ. In un impianto, in 24 ore viene impiegata l'energia data in kWh. Sapendo che la differenza di potenziale dell'impianto è quella data in V, dire qual è la corrente in mA che ha circolato nell'impianto.

Dati 52.329 185.27

Risposta 0.1177E+05

Domanda numero 14. Il peso é 0.5

La resistenza data in $k\Omega$ viene attraversata dalla corrente data in mA. Dire la potenza dissipata in essa per effetto Joule, in W.

Dati 9.5938 1877.8

Risposta 0.3383E+05

Domanda numero 15. Il peso é 3.0

Una centrale idroelettrica deve produrre la potenza elettrica indicata in MW. Sapendo che l'altezza della caduta d'acqua è quella indicata in m e che la frazione di energia trasformata in energia elettrica è quella indicata, determinare il flussod'acqua in m³/s necessario al funzionamento della centrale.

Dati 73.737 120.71 0.49621

Risposta 125.5

Domanda numero 16. Il peso é 2.0

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Conoscendo l'induzione magnetica che produce in T e la sua resistenza in Ω determinare la potenza dissipata nel solenoide in kW.

Dati 8500.0 0.54521E-01 14.592 0.52526

Risposta 2.914

Domanda numero 17. Il peso é 2.0

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico uniforme dato in V/m con il suo errore. Determinare l'errore sulla differenza di potenziale in V fra i due punti.

Dati 3.1796 70.925 0.17571

Risposta 0.5587

Domanda numero 18. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in m^3/s , mentre l'altezza da cui cade l'acqua è anche data in m. Sapendo che la frazione di energia che viene trasformata in energia elettrica è quella indicata, dire qual è la potenza elettrica in W prodotta dalla centrale.

Dati 151.42 190.14 0.77939

Risposta 0.2201E+09

Domanda numero 19. Il peso é 1.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine si trova alla distanza data, anch'essa in cm, dire quanto è l'ingrandimento della lente.

Dati 21.807 65.492

Risposta 3.003

Domanda numero 20. Il peso é 3.0

Un solenoide é immerso in un campo magnetico H dato in A/m disposto inizialmente lungo il suo asse. Dato il numero di spire del solenoide ed il loro raggio in cm, determinare la differenza di potenziale massima che si trova ai suoi estremi quando esso ruota con la frequnza data in Hz.

Dati 2170.1 2916.7 43.338 82.668

Risposta 2438.

Domanda numero 1. Il peso é 2.0

La resistenza data in Ω con il suo errore, viene attraversata dalla corrente data in A. Dire l'errore sulla potenza dissipata in kW per effetto Joule.

Dati 36.973 0.17264E-01 20.785

Risposta 0.7458E-02

Domanda numero 2. Il peso é 1.0

Una lampadina avente la resistenza indicata in Ω viene alimentata con la differenza di potenziale alternata di 220 V efficaci. Sapendo che la frazione indicata della potenza viene trasformata in luce, dire qual è la potenza in W che viene trasformata in calore.

Dati 276.43 0.51748

Risposta 84.48

Domanda numero 3. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in μ m da un protone (stessa carica, ma positiva) e poi in un secondo tempo si trova alla distanza data in nm dal protone. Determinare la velocitá che l'elettrone ha nel secondo punto sapendo che la velocitá nel primo punto era quella data in m/s.

Dati 0.19019E-04 0.25354E-02 0.13038E+08

Risposta 0.1857E+08

Domanda numero 4. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in m³/s, mentre l'altezza da cui cade l'acqua è anche data in m. Sapendo che la frazione di energia che viene trasformata in energia elettrica è quella indicata, dire qual è la potenza elettrica in W prodotta dalla centrale.

Dati 148.60 85.218 0.74775

Risposta 0.9286E+08

Domanda numero 5. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul secondario ha il valore indicato, dire qual è la differenza di potenziale applicata al primario in kV.

Dati 2900.0 21800. 6167.8

Risposta 0.8205

Domanda numero 6. Il peso é 2.0

Un generatore produce la differenza di potenziale che viene data in V con il suo errore. Con la resistenza interna data in Ω , dire l'errore sulla differenza di potenziale in V agli estremi della resistenza data in Ω che viene posta in uscita.

Dati 8253.5 10.611 0.14882E+07 0.18348E+06

Risposta 1.165

Domanda numero 7. Il peso é 3.0

Una carica elettrica è data in C ed è disposta uniformemente su un volume sferico. Dato il raggio della sfera in cm determinare il *potenziale* in V alla distanza dal centro data in cm. *Controllare* se la distanza è maggiore o minore del raggio.

Dati -0.32918E-04 71.364 58.214

Risposta -0.2759E+06

Domanda numero 8. Il peso é 1.0

Le due cariche elettriche date in C sono disposte uniformemente su due sfere. Le due sfere si trovano ad una distanza data in cm. Determinare la forza in N che agisce fra di esse.

Dati 0.63985E-04 0.20394E-04 24.443

Risposta 196.3

Domanda numero 9. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova ad una certa distanza da un protone (stessa carica, ma positiva) con una velocitá data in m/s. Dopo un certo tempo si trova in un secondo punto alla distanza data in nm e con la velocitá data in m/s. Determinare a che distanza dal protone in nm si trovava nel primo punto.

Dati 0.12105E+08 0.16810E-01 0.13132E+08

Risposta 0.1137

Domanda numero 10. Il peso é 0.5

Quattro resistenze hanno i valori che vengono dati in Ω . Dire il valore della resistenza totale in k Ω quando esse vengono dispote in serie.

Dati 1241.7 12108. 9692.3 11517.

Risposta 34.56

Domanda numero 11. Il peso é 0.5

Quattro resistenze hanno i valori che vengono dati in Ω . Dire il valore della resistenza totale in Ω quando esse vengono dispote in parallelo.

Dati 897.44 10408. 7159.9 18573.

Risposta 712.3

Domanda numero 12. Il peso é 1.0

Un generatore produce la differenza di potenziale che viene data in V. Esso ha la resistenza interna che viene data in Ω . Dire il valore della differenza di potenziale in kV agliestremi della resistenza data in Ω che viene posta all'uscita del generatore.

Dati 9829.9 0.14194E+06 0.16481E+07

Risposta 9.050

Domanda numero 13. Il peso é 1.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine si trova alla distanza data, anch'essa in cm, dire quanto è l'ingrandimento della lente.

Dati 20.969 70.932

Risposta 3.383

Domanda numero 14. Il peso é 3.0

Sapendo che l'obiettivo di un microscopio ha la focale data in mm e sapendo che un oggetto illuminato si trova alla distanza data in mm con il suo errore, dire l'errore sulla posizione dell'immagine.

Dati 0.14258 0.23028 0.55681E-02

Risposta 0.1472E-01

Domanda numero 15. Il peso é 3.0

Un generatore produce la differenza di potenziale che viene data in V. La resistenza interna è data in Ω con il suo errore. Determinare l'errore sulla differenza di potenziale in kV agli estremi della resistenza data in Ω che viene disposta in uscita.

Dati 6552.0 0.19575E+07 1135.2 0.12731E+06

Risposta 0.2179E-03

Domanda numero 16. Il peso é 3.0

Una centrale idroelettrica deve produrre la potenza elettrica indicata in MW. Sapendo che l'altezza della caduta d'acqua è quella indicata in m e che la frazione di energia trasformata in energia elettrica è quella indicata, determinare il flussod'acqua in m³/s necessario al funzionamento della centrale.

Dati 192.18 129.69 0.52284

Risposta 289.0

Domanda numero 17. Il peso é 2.0

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Conoscendo l'induzione magnetica che produce in T e la sua resistenza in Ω determinare la potenza dissipata nel solenoide in kW.

Dati 11000. 0.62362E-01 21.664 0.53634

Risposta 5.123

Domanda numero 18. Il peso é 2.0

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul primario ha il valore indicato con il suo errore, dire l'errore sulla differenza di potenziale sul secondario in kV.

Dati 2360.0 24400. 1850.6 2.2146

Risposta 0.2290E-01

Domanda numero 19. Il peso é 2.0

Una carica puntiforme data in C si trova alla distanza data in m da un'altra carica data in C ed in posizione fissa. Determinare la velocitá con cui arriva la prima carica alla distanza di 1 nm dalla seconda se la sua massa é quella data in g, le due cariche sono di segno opposto e la prima carica é inizialmente ferma.

Dati 0.36243E-04 0.33449E-02 0.19650E-03 0.35501E-09

Risposta 0.6005E+12

Domanda numero 20. Il peso é 3.0

Due resistenze hanno i valori e gli errori che vengono dati in Ω . Dire l'errore in Ω sul valore della resistenza totale, quando le due resistenze sono disposte in parallelo.

Dati 0.14872E+06 99.093 0.13832E+07 171.80

Risposta 82.41

Domanda numero 1. Il peso é 3.0

Un generatore produce la differenza di potenziale che viene data in V. La resistenza interna è data in Ω con il suo errore. Determinare l'errore sulla differenza di potenziale in kV agli estremi della resistenza data in Ω che viene disposta in uscita.

Dati 6314.1 0.10624E+07 1048.8 0.11393E+06

Risposta 0.5452E-03

Domanda numero 2. Il peso é 0.5

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Determinare l'induzione magnetica che produce in T quando è nota la sua resistenza in Ω e la differenza di potenziale applicata in kV.

Dati 11200. 0.81526E-01 0.28605 0.20660

Risposta 124.7

Domanda numero 3. Il peso é 2.0

Due resistenza hanno i valori e gli errori che vengono dati in Ω . Dire l'errore in k Ω sul valore della resistenza totale, quando le due resistenze sono disposte in serie.

Dati 1304.5 10.490 9239.0 1.5180

Risposta 0.1201E-01

Domanda numero 4. Il peso é 1.0

Una lampadina avente la resistenza indicata in Ω viene alimentata con la differenza di potenziale alternata di 220 V efficaci. Sapendo che la frazione indicata della potenza viene trasformata in luce, dire qual è la potenza in W che viene trasformata in calore.

Dati 260.27 0.75685

Risposta 45.22

Domanda numero 5. Il peso é 2.0

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Conoscendo l'induzione magnetica che produce in T e la sua resistenza in Ω determinare la potenza dissipata nel solenoide in kW.

Dati 14800. 0.55319E-01 10.235 0.42697

Risposta 0.3957

Domanda numero 6. Il peso é 1.0

Un dispositivo elettrico viene alimentato con la differenza di potenziale indicata in V e la corrente viene anch'essa data in A. Sapendo che il dispositivo viene tenuto in funzione per il tempo dato in ore, dire qual è l'energia in J che è stata dissipata.

Dati 332.28 21.500 2.4400

Risposta 0.6275E+08

Domanda numero 7. Il peso é 3.0

Due resistenze hanno i valori e gli errori che vengono dati in Ω . Dire l'errore in Ω sul valore della resistenza totale, quando le due resistenze sono disposte in parallelo.

Dati 0.15509E+06 133.34 0.15444E+07 196.53

Risposta 111.7

Domanda numero 8. Il peso é 1.0

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che la focale è quella data in mm, dire quanto è ingrandita l'immagine prodotta.

Dati 0.27259 0.10293

Risposta 0.6067

Domanda numero 9. Il peso é 1.0

Le due cariche elettriche date in C sono disposte uniformemente su due sfere. Le due sfere si trovano ad una distanza data in cm. Determinare la forza in N che agisce fra di esse.

Dati 0.71567E-04 0.28418E-04 12.040

Risposta 1261.

Domanda numero 10. Il peso é 0.5

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico costante dato in V/m. Determinare la differenza di potenziale in mV fra i due punti.

Dati 2.2759 66.410

Risposta 0.1511E+06

Domanda numero 11. Il peso é 1.0

Due conduttori hanno la stessa resistivitá che viene data in Ω m. Essi hanno anche la stessa sezione che viene data in mm². Essi hanno le lunghezze indicate in m. Dire qual è la resistenza totale in k Ω quando essi vengono collegati per una estremitá (in serie).

Dati 0.19242E-06 0.64401 97.019 92.085

Risposta 0.5650E-01

Domanda numero 12. Il peso é 1.0

Due conduttori hanno la stessa resistivitá che viene data in Ω m. Essi hanno anche la stessa sezione che viene data in mm². Essi hanno le lunghezze indicate in m. Dire qual è la resistenza totale in k Ω quando essi vengono collegati con le due estremitá in comune (parallelo).

Dati 0.15626E-06 1.2247 62.991 78.165

Risposta 0.4451E-02

Domanda numero 13. Il peso é 0.5

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che la sua focale è quella data in mm, dire a quale distanza in mm dall'obiettivo si formerá l'immagine.

Dati 0.22572 0.13248

Risposta 0.3207

Domanda numero 14. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in μ m da un protone (stessa carica, ma positiva) con una velocitá data in m/s. Dopo un certo tempo si trova in un secondo punto con la velocitá data in m/s. Determinare a che distanza dal protone in nm si trova nel secondo punto.

Dati 0.15156E-05 0.27878E+08 0.24958E+08

Risposta 0.2793E-02

Domanda numero 15. Il peso é 1.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine è ingrandita del fattore dato, dire qual è la focale in cm della lente.

Dati 6.0548 15.000

Risposta 5.676

Domanda numero 16. Il peso é 2.0

Due sfere sono cariche e le due cariche sono date in C. I centri si trovano alla distanza anch'essa data in m con l'errore. Determinare l'errore sulla forza in N.

Dati 0.89753E-04 0.29122E-04 0.14849 0.39421E-02

Risposta 56.57

Domanda numero 17. Il peso é 2.0

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico uniforme dato in V/m con il suo errore. Determinare l'errore sulla differenza di potenziale in V fra i due punti.

Dati 4.9251 62.094 0.11040

Risposta 0.5437

Domanda numero 18. Il peso é 1.0

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico costante. Sapendo che tra i due punti vi è una differenza di potenziale data in V, determinare il campo in mV/m.

Dati 4.5113 568.40

Risposta 0.1260E+06

Domanda numero 19. Il peso é 1.0

Un generatore produce la differenza di potenziale che viene data in V. Esso ha la resistenza interna che viene data in Ω . Dire il valore della differenza di potenziale in kV agliestremi della resistenza data in Ω che viene posta all'uscita del generatore.

Dati 7271.6 0.19768E+06 0.12691E+07

Risposta 6.292

Domanda numero 20. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in kg/s, mentre l'altezza da cui cade l'acqua è anche data in m. Sapendo che la frazione di energia che viene trasformata in energia elettrica è quella indicata, dire qual è la potenza elettrica in W prodotta dalla centrale.

Dati 170.94 71.448 0.40390

Risposta 0.4838E+05

Domanda numero 1. Il peso é 1.0

Le due cariche elettriche date in C sono disposte uniformemente su due sfere. Le due sfere si trovano ad una distanza data in cm. Determinare la forza in N che agisce fra di esse.

Dati 0.63493E-04 0.20356E-04 29.180

Risposta 136.4

Domanda numero 2. Il peso é 1.0

Un'onda sonora si propaga da un treno che si muove verso un ricevitore con la velocitá data in m/s e con frequenza anche essa data in Hz. Determinare la frequenza ricevuta dal ricevitore in Hz.

Dati 16.409 4229.4

Risposta 4424.

Domanda numero 3. Il peso é 2.0

Un conduttore ha la resistivitá che viene data in Ω m. Esso ha la sezione che viene data in mm² con il suo errore. Dire qual è l'errore sulla resistenza del conduttore in $k\Omega$ se esso ha la lunghezza data in m.

Dati 0.20773E-06 2.2788 0.92201E-02 29.674

Risposta 0.1094E-04

Domanda numero 4. Il peso é 2.0

Un conduttore ha la resistivitá che viene data in Ω m. Esso ha la sezione che viene data in mm² e la lunghezza data in m con il suo errore. Dire qual è l'errore sulla resistenza del conduttore in k Ω .

Dati 0.19609E-06 1.0450 85.529 0.87626E-01

Risposta 0.1644E-04

Domanda numero 5. Il peso é 3.0

Sapendo che l'obiettivo di un microscopio ha la focale data in mm e sapendo che un oggetto illuminato si trova alla distanza data in mm con il suo errore, dire l'errore sulla posizione dell'immagine.

Dati 0.13543 0.38158 0.71731E-02

Risposta 0.2171E-02

Domanda numero 6. Il peso é 3.0

Un solenoide é immerso in un campo magnetico H dato in A/m disposto inizialmente lungo il suo asse. Dato il numero di spire del solenoide ed il loro raggio in cm, determinare la differenza di potenziale massima che si trova ai suoi estremi quando esso ruota con la frequnza data in Hz.

Dati 34207. 1491.1 33.749 103.72

Risposta 0.1495E+05

Domanda numero 7. Il peso é 1.0

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico costante. Sapendo che tra i due punti vi è una differenza di potenziale data in V, determinare il campo in mV/m.

Dati 5.8535 541.94

Risposta 0.9258E+05

Domanda numero 8. Il peso é 0.5

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Determinare l'induzione magnetica che produce in T quando è percorso dalla corrente data in mA.

Dati 8300.0 0.13893 725.25

Risposta 0.5445E-01

Domanda numero 9. Il peso é 0.5

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che l'immagine si forma alla distanza anch'essa data in mm, dire qual è la focale dell'obiettivo.

Dati 0.35014 0.31026

Risposta 0.1645

Domanda numero 10. Il peso é 2.0

La resistenza data in Ω con il suo errore, viene attraversata dalla corrente data in A. Dire l'errore sulla potenza dissipata in kW per effetto Joule.

Dati 39.557 0.16139E-01 25.905

Risposta 0.1083E-01

Domanda numero 11. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in kg/s. L'altezza da cui cade l'acqua è data in m con il suo errore. La frazione di energia che viene trasformata in energia elettrica è quella indicata. Determinare l'errore sulla potenza elettrica in W prodotta dalla centrale.

Dati 63.102 139.57 0.40477 0.60908

Risposta 152.6

Domanda numero 12. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul secondario ha il valore indicato, dire qual è la differenza di potenziale applicata al primario in kV.

Dati 3460.0 24800. 9368.6

Risposta 1.307

Domanda numero 13. Il peso é 0.5

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che la sua focale è quella data in mm, dire a quale distanza in mm dall'obiettivo si formerá l'immagine.

Dati 0.29480 0.11451

Risposta 0.1873

Domanda numero 14. Il peso é 1.0

Il kWh (1 kW per un'ora) è un'unitá di energia che corrisponde a 3600 kJ. In un impianto, in 24 ore viene impiegata l'energia data in kWh. Sapendo che la differenza di potenziale dell'impianto è quella data in V, dire qual è la corrente in mA che ha circolato nell'impianto.

Dati 68.950 129.63

Risposta 0.2216E+05

Domanda numero 15. Il peso é 3.0

Una centrale idroelettrica deve produrre la potenza elettrica indicata in MW. Sapendo che l'altezza della caduta d'acqua è quella indicata in m e che la frazione di energia trasformata in energia elettrica è quella indicata, determinare il flussod'acqua in m³/s necessario al funzionamento della centrale.

Dati 176.64 94.948 0.66767

Risposta 284.1

Domanda numero 16. Il peso é 1.0

Una lampadina avente la resistenza indicata in Ω viene alimentata con la differenza di potenziale alternata di 220 V efficaci. Sapendo che la frazione indicata della potenza viene trasformata in luce, dire qual è la potenza in W che viene trasformata in calore.

Dati 293.77 0.72893

Risposta 44.66

Domanda numero 17. Il peso é 2.0

Due sfere sono cariche e le due cariche sono date in C. I centri si trovano alla distanza anch'essa data in m con l'errore. Determinare l'errore sulla forza in N.

Dati 0.63763E-04 0.27146E-04 0.11061 0.31377E-05

Risposta 72.14

Domanda numero 18. Il peso é 0.5

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico costante dato in V/m. Determinare la differenza di potenziale in mV fra i due punti.

Dati 2.8356 78.276

Risposta 0.2220E+06

Domanda numero 19. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova ad una certa distanza da un protone (stessa carica, ma positiva) con una velocitá data in m/s. Dopo un certo tempo si trova in un secondo punto alla distanza data in nm e con la velocitá data in m/s. Determinare a che distanza dal protone in nm si trovava nel primo punto.

Dati 0.18289E+08 0.23137E-02 0.22750E+08

Risposta 0.1348E-01

Domanda numero 20. Il peso é 1.0

Un conduttore ha la resistivitá elettrica data in Ω m. Data la sua sezione in mm² e la sua lunghezza in m, determinare la sua resistenza in k Ω .

Dati 0.16580E-06 1.3521 53.631

Risposta 0.6577E-02

Domanda numero 1. Il peso é 2.0

Alla resistenza data in $k\Omega$ viene applicata la differenza di potenziale data in V con il suo errore. Dire l'errore sulla potenza dissipata per effetto Joule in kW.

Dati 9.4745

Risposta 0.3784E-04

Domanda numero 2. Il peso é 2.0

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico uniforme dato in V/m con il suo errore. Determinare l'errore sulla differenza di potenziale in V fra i due punti.

Dati 5.1260 89.463 0.15387

Risposta 0.7887

Domanda numero 3. Il peso é 0.5

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Determinare l'induzione magnetica che produce in T quando è nota la sua resistenza in Ω e la differenza di potenziale applicata in kV.

Dati 5000.0 0.83597E-01 0.20769 0.22046

102.97

1.7411

Risposta 79.78

Domanda numero 4. Il peso é 2.0

La resistenza data in Ω con il suo errore, viene attraversata dalla corrente data in A. Dire l'errore sulla potenza dissipata in kW per effetto Joule.

Dati 95.946 0.13090E-01 25.843

Risposta 0.8743E-02

Domanda numero 5. Il peso é 0.5

Alla resistenza data in $k\Omega$ viene applicata la differenza di potenziale data in V. Dire la potenza dissipata in essa per effetto Joule, in W.

Dati 4.3382 244.27

Risposta 13.75

Domanda numero 6. Il peso é 1.0

Le due cariche elettriche date in C sono disposte uniformemente su due sfere. Le due sfere si trovano ad una distanza data in cm. Determinare la forza in N che agisce fra di esse.

Dati 0.67208E-04 0.28803E-04 28.430

Risposta 215.3

Domanda numero 7. Il peso é 1.0

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che la focale è quella data in mm, dire quanto è ingrandita l'immagine prodotta.

Dati 0.33036 0.11968

Risposta 0.5681

Domanda numero 8. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul secondario ha il valore indicato, dire qual è la differenza di potenziale applicata al primario in kV.

Dati 2280.0 23600. 6942.

Risposta 0.6707

Domanda numero 9. Il peso é 2.0

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul primario ha il valore indicato con il suo errore, dire l'errore sulla differenza di potenziale sul secondario in kV.

Dati 3800.0 36200. 1094.2 3.6555

Risposta 0.3482E-01

Domanda numero 10. Il peso é 2.0

Alla resistenza data in $k\Omega$ con il suo errore, viene applicata la differenza di potenziale data in V. Dire l'errore sulla potenza dissipata per effetto Joule in mW.

Dati 9.0914 0.84019E-02 937.87

Risposta 89.41

Domanda numero 11. Il peso é 0.5

Quattro resistenze hanno i valori che vengono dati in Ω . Dire il valore della resistenza totale in k Ω quando esse vengono dispote in serie.

Dati 882.81 10580. 6519.7 18237.

Risposta 36.22

Domanda numero 12. Il peso é 0.5

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico costante dato in V/m. Determinare la differenza di potenziale in mV fra i due punti.

Dati 2.9937 57.866

Risposta 0.1732E+06

Domanda numero 13. Il peso é 2.0

Un generatore produce la differenza di potenziale che viene data in V con il suo errore. Con la resistenza interna data in Ω , dire l'errore sulla differenza di potenziale in V agli estremi della resistenza data in Ω che viene posta in uscita.

Dati 6415.1 13.177 0.11811E+07 0.11415E+06

Risposta 1.161

Domanda numero 14. Il peso é 2.0

Un conduttore ha la resistivitá elettrica data in Ω m. Data la sua sezione in mm² e la sua lunghezza in m con il suo errore, determinare l'errore sulla sua resistenza in k Ω .

Dati 0.48075E-07 1.8235 87.642 0.10621E-01

Risposta 0.2800E-06

Domanda numero 15. Il peso é 2.0

Un conduttore ha la resistivitá che viene data in Ω m. Esso ha la sezione che viene data in mm² e la lunghezza data in m con il suo errore. Dire qual è l'errore sulla resistenza del conduttore in k Ω .

Dati 0.86895E-07 0.61399 76.160 0.25210

Risposta 0.3568E-04

Domanda numero 16. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova ad una certa distanza da un protone (stessa carica, ma positiva) con una velocitá data in m/s. Dopo un certo tempo si trova in un secondo punto alla distanza data in nm e con la velocitá data in m/s. Determinare a che distanza dal protone in nm si trovava nel primo punto.

Dati 0.15918E+08 0.29371E-01 0.15295E+08

Risposta 0.1388E-01

Domanda numero 17. Il peso é 0.5

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che l'immagine si forma alla distanza anch'essa data in mm, dire qual è la focale dell'obiettivo.

Dati 0.54309 0.34393

Risposta 0.2106

Domanda numero 18. Il peso é 1.0

Un generatore produce la differenza di potenziale che viene data in V. Esso ha la resistenza interna che viene data in Ω . Dire il valore della differenza di potenziale in kV agliestremi della resistenza data in Ω che viene posta all'uscita del generatore.

Dati 7968.5 0.11170E+06 0.15724E+07

Risposta 7.440

Domanda numero 19. Il peso é 1.0

Il kWh (1 kW per un'ora) è un'unitá di energia che corrisponde a 3600 kJ. In un impianto, in 24 ore viene impiegata l'energia data in kWh. Sapendo che la differenza di potenziale dell'impianto è quella data in V, dire qual è la corrente in mA che ha circolato nell'impianto.

Dati 120.20 239.67

Risposta 0.2090E+05

Domanda numero 20. Il peso é 0.5

Quattro resistenze hanno i valori che vengono dati in Ω . Dire il valore della resistenza totale in Ω quando esse vengono dispote in parallelo.

Dati 969.45 15222. 6278.5 16921.

Risposta 760.1

Domanda numero 1. Il peso é 2.0

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul primario ha il valore indicato con il suo errore, dire l'errore sulla differenza di potenziale sul secondario in kV.

Dati 2980.0 35400. 2240.1 2.8228

Risposta 0.3353E-01

Domanda numero 2. Il peso é 2.0

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico uniforme dato in V/m con il suo errore. Determinare l'errore sulla differenza di potenziale in V fra i due punti.

Dati 5.4950 63.050 0.13483

Risposta 0.7409

Domanda numero 3. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul primario ha il valore indicato, dire qual è la differenza di potenziale presente al secondario in kV.

Dati 2420.0 30800. 2105.9

Risposta 26.80

Domanda numero 4. Il peso é 3.0

Due resistenze hanno i valori e gli errori che vengono dati in Ω . Dire l'errore in Ω sul valore della resistenza totale, quando le due resistenze sono disposte in parallelo.

Dati 88512. 80.310 0.15628E+07 165.08

Risposta 72.41

Domanda numero 5. Il peso é 1.0

Il kWh (1 kW per un'ora) è un'unitá di energia che corrisponde a 3600 kJ. In un impianto, in 24 ore viene impiegata l'energia data in kWh. Sapendo che la differenza di potenziale dell'impianto è quella data in V, dire qual è la corrente in mA che ha circolato nell'impianto.

Dati 53.615 158.75

Risposta 0.1407E+05

Domanda numero 6. Il peso é 3.0

Una centrale idroelettrica deve produrre la potenza elettrica indicata in MW. Sapendo che l'altezza della caduta d'acqua è quella indicata in m e che la frazione di energia trasformata in energia elettrica è quella indicata, determinare il flussod'acqua in m³/s necessario al funzionamento della centrale.

Dati 162.03 187.53 0.59201

Risposta 148.8

Domanda numero 7. Il peso é 2.0

Un conduttore ha la resistivitá che viene data in Ω m. Esso ha la sezione che viene data in mm² con il suo errore. Dire qual è l'errore sulla resistenza del conduttore in $k\Omega$ se esso ha la lunghezza data in m.

Dati 0.27006E-06 1.7324 0.29863E-02 90.028

Risposta 0.2419E-04

Domanda numero 8. Il peso é 1.0

Due conduttori hanno la stessa resistivitá che viene data in Ω m. Essi hanno anche la stessa sezione che viene data in mm². Essi hanno le lunghezze indicate in m. Dire qual è la resistenza totale in k Ω quando essi vengono collegati con le due estremitá in comune (parallelo).

Dati 0.60378E-07 1.1259 92.816 107.37

Risposta 0.2670E-02

Domanda numero 9. Il peso é 1.0

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che la focale è quella data in mm, dire quanto è ingrandita l'immagine prodotta.

Dati 0.34112 0.13704

Risposta 0.6715

Domanda numero 10. Il peso é 1.0

Una lampadina avente la resistenza indicata in Ω viene alimentata con la differenza di potenziale alternata di 220 V efficaci. Sapendo che la frazione indicata della potenza viene trasformata in luce, dire qual è la potenza (W) della luce prodotta.

Dati 294.40 0.54141

Risposta 89.01

Domanda numero 11. Il peso é 3.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine si trova alla distanza data, anch'essa in cm, con il suo errore, dire quanto è l'errore sull'ingrandimento della lente.

Dati 9.9634 67.677 0.17027

Risposta 0.1709E-01

Domanda numero 12. Il peso é 1.0

Una lampadina avente la resistenza indicata in Ω viene alimentata con la differenza di potenziale alternata di 220 V efficaci. Sapendo che la frazione indicata della potenza viene trasformata in luce, dire qual è la potenza in W che viene trasformata in calore.

Dati 317.15 0.54346

Risposta 69.67

Domanda numero 13. Il peso é 2.0

Un generatore produce la differenza di potenziale che viene data in V con il suo errore. Con la resistenza interna data in Ω , dire l'errore sulla differenza di potenziale in V agli estremi della resistenza data in Ω che viene posta in uscita.

Dati 7555.6 18.246 0.12416E+07 0.12626E+06

Risposta 1.684

Domanda numero 14. Il peso é 0.5

La resistenza data in $k\Omega$ viene attraversata dalla corrente data in mA. Dire la potenza dissipata in essa per effetto Joule, in W.

Dati 9.9158 1482.4

Risposta 0.2179E+05

Domanda numero 15. Il peso é 1.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine è ingrandita del fattore dato, dire qual è la focale in cm della lente.

Dati 8.4863 17.118

Risposta 8.018

Domanda numero 16. Il peso é 3.0

Un solenoide é immerso in un campo magnetico H dato in A/m disposto inizialmente lungo il suo asse. Dato il numero di spire del solenoide ed il loro raggio in cm, determinare la differenza di potenziale massima che si trova ai suoi estremi quando esso ruota con la frequnza data in Hz.

Dati 35398. 2153.9 45.306 24.728

Risposta 9599.

Domanda numero 17. Il peso é 2.0

Una carica puntiforme data in C si trova alla distanza data in m da un'altra carica in posizione fissa. Data la velocitá in m/s con cui arriva la prima carica alla distanza di 1 nm dalla seconda, se la sua massa é quella data in g e se le due cariche sono di segno opposto, determinare il valore in C della carica in posizione fissa.

Dati 0.11325E-04 0.47441E-02 91053. 0.14122E-09

Risposta 0.5751E-17

Domanda numero 18. Il peso é 0.5

Quattro resistenze hanno i valori che vengono dati in Ω . Dire il valore della resistenza totale in k Ω quando esse vengono dispote in serie.

Dati 1205.2 14985. 6707.0 15047.

Risposta 37.94

Domanda numero 19. Il peso é 3.0

Un generatore produce la differenza di potenziale che viene data in V. La resistenza interna è data in Ω con il suo errore. Determinare l'errore sulla differenza di potenziale in kV agli estremi della resistenza data in Ω che viene disposta in uscita.

Dati 7120.3 0.19173E+07 1825.6 0.13448E+06

Risposta 0.4152E-03

Domanda numero 20. Il peso é 1.0

Un'onda elettromagnetica si propaga da un aereo che si muove verso un ricevitore con la velocitá data in m/s e con frequenza anche essa data in Hz. Determinare la frequenza ricevuta dal ricevitore in Hz.

Dati 389.44 0.62376E+09

Risposta 0.6238E+09

Domanda numero 1. Il peso é 3.0

Le due cariche elettriche date in C sono disposte uniformemente su un volume sferico. Le due sfere si trovano ad una distanza data in cm. Dato il diametro delle sfere in cm determinare la forza in N che agisce fra di esse. Controllare se le sfere sono sovrapposte.

Dati 0.86398E-04 0.23960E-04 38.156 14.526

Risposta 0.7868E+05

Domanda numero 2. Il peso é 3.0

Due resistenze hanno i valori e gli errori che vengono dati in Ω . Dire l'errore in Ω sul valore della resistenza totale, quando le due resistenze sono disposte in parallelo.

 ${f Dati}$ 81208. 85.351 0.11329E+07 177.38

Risposta 75.11

Domanda numero 3. Il peso é 1.0

Il kWh (1 kW per un'ora) è un'unitá di energia che corrisponde a 3600 kJ. In un impianto, in 24 ore viene impiegata l'energia data in kWh. Sapendo che la differenza di potenziale dell'impianto è quella data in V, dire qual è la corrente in mA che ha circolato nell'impianto.

Dati 68.031 207.51

Risposta 0.1366E+05

Domanda numero 4. Il peso é 2.0

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Conoscendo l'induzione magnetica che produce in T e la sua resistenza in Ω determinare la potenza dissipata nel solenoide in kW.

Dati 5300.0 0.89119E-01 15.974 0.29178

Risposta 13.33

Domanda numero 5. Il peso é 1.0

Un generatore produce la differenza di potenziale che viene data in V. Esso ha la resistenza interna che viene data in Ω . Dire il valore della differenza di potenziale in kV agliestremi della resistenza data in Ω che viene posta all'uscita del generatore.

Dati 7020.7 0.19661E+06 0.16660E+07

Risposta 6.280

Domanda numero 6. Il peso é 3.0

Un solenoide é immerso in un campo magnetico H dato in A/m disposto inizialmente lungo il suo asse. Dato il numero di spire del solenoide ed il loro raggio in cm, determinare la differenza di potenziale massima che si trova ai suoi estremi quando esso ruota con la frequnza data in Hz.

Dati 14048. 1069.6 48.947 42.075

Risposta 3757.

Domanda numero 7. Il peso é 0.5

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Determinare l'induzione magnetica che produce in T quando è percorso dalla corrente data in mA.

Dati 7100.0 0.84473E-01 964.70

Risposta 0.1019

Domanda numero 8. Il peso é 2.0

La resistenza data in Ω viene attraversata dalla corrente data in A con il suo errore. Dire l'errore sulla potenza dissipata in kW per effetto Joule.

Dati 12.126 12.210 0.11200

Risposta 0.3316E-01

Domanda numero 9. Il peso é 1.0

Un dispositivo elettrico viene alimentato con la differenza di potenziale indicata in V e la corrente viene anch'essa data in A. Sapendo che il dispositivo viene tenuto in funzione per il tempo dato in ore, dire qual è l'energia in J che è stata dissipata.

Dati 267.38 19.791 2.7144

Risposta 0.5171E+08

Domanda numero 10. Il peso é 0.5

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che l'immagine si forma alla distanza anch'essa data in mm, dire qual è la focale dell'obiettivo.

Dati 0.53531 0.21854

Risposta 0.1552

Domanda numero 11. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in μ m da un protone (stessa carica, ma positiva) e poi in un secondo tempo si trova alla distanza data in nm dal protone. Determinare la velocitá che l'elettrone ha nel secondo punto sapendo che la velocitá nel primo punto era quella data in m/s.

Dati 0.49266E-04 0.46953E-02 0.13289E+08

Risposta 0.1659E+08

Domanda numero 12. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in m³/s, mentre l'altezza da cui cade l'acqua è anche data in m. Sapendo che la frazione di energia che viene trasformata in energia elettrica è quella indicata, dire qual è la potenza elettrica in W prodotta dalla centrale.

Dati 79.277 138.19 0.47450

Risposta 0.5098E+08

Domanda numero 13. Il peso é 2.0

Due sfere sono cariche e le due cariche sono date in C. I centri si trovano alla distanza anch'essa data in m con l'errore. Determinare l'errore sulla forza in N.

Dati 0.72234E-04 0.23405E-04 0.13701 0.29293E-02

Risposta 34.61

Domanda numero 14. Il peso é 2.0

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul primario ha il valore indicato con il suo errore, dire l'errore sulla differenza di potenziale sul secondario in kV.

Dati 2840.0 35600. 1557.7 3.3443

Risposta 0.4192E-01

Domanda numero 15. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul primario ha il valore indicato, dire qual è la differenza di potenziale presente al secondario in kV.

Dati 2760.0 25600. 1662.5

Risposta 15.42

Domanda numero 16. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova ad una certa distanza da un protone (stessa carica, ma positiva) con una velocitá data in m/s. Dopo un certo tempo si trova in un secondo punto alla distanza data in nm e con la velocitá data in m/s. Determinare a che distanza dal protone in nm si trovava nel primo punto.

Dati 0.18633E+08 0.43380E-02 0.13595E+08

Risposta 0.1824E-02

Domanda numero 17. Il peso é 0.5

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Determinare l'induzione magnetica che produce in T quando è nota la sua resistenza in Ω e la differenza di potenziale applicata in kV.

Dati 8100.0 0.52346E-01 0.23599 0.26562

Risposta 218.9

Domanda numero 18. Il peso é 3.0

Una centrale idroelettrica deve produrre la potenza elettrica indicata in MW. Sapendo che l'altezza della caduta d'acqua è quella indicata in m e che la frazione di energia trasformata in energia elettrica è quella indicata, determinare il flussod'acqua in m³/s necessario al funzionamento della centrale.

Dati 84.735 154.15 0.62209

Risposta 90.10

Domanda numero 19. Il peso é 3.0

Un generatore produce la differenza di potenziale che viene data in V. La resistenza interna è data in Ω con il suo errore. Determinare l'errore sulla differenza di potenziale in kV agli estremi della resistenza data in Ω che viene disposta in uscita.

Dati 9099.6 0.14789E+07 1946.7 0.13660E+06

Risposta 0.9271E-03

Domanda numero 20. Il peso é 0.5

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico costante dato in V/m. Determinare la differenza di potenziale in mV fra i due punti.

Dati 3.6795 71.626

Risposta 0.2636E+06

Domanda numero 1. Il peso é 0.5

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che la sua focale è quella data in mm, dire a quale distanza in mm dall'obiettivo si formerá l'immagine.

Dati 0.36754 0.13429

Risposta 0.2116

Domanda numero 2. Il peso é 0.5

La resistenza data in $k\Omega$ viene attraversata dalla corrente data in mA. Dire la potenza dissipata in essa per effetto Joule, in W.

Dati 6.6234 2928.7

Risposta 0.5681E+05

Domanda numero 3. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova ad una certa distanza da un protone (stessa carica, ma positiva) con una velocitá data in m/s. Dopo un certo tempo si trova in un secondo punto alla distanza data in nm e con la velocitá data in m/s. Determinare a che distanza dal protone in nm si trovava nel primo punto.

Dati 0.28419E+08 0.34125E-02 0.16774E+08

Risposta 0.7562E-03

Domanda numero 4. Il peso é 1.0

Tra due punti A e B la cui distanza é data in m è presente un campo elettrico costante. Sapendo che tra i due punti vi è una differenza di potenziale data in V, determinare il campo in mV/m.

Dati 3.2446 437.91

Risposta 0.1350E+06

Domanda numero 5. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in kg/s. L'altezza da cui cade l'acqua è data in m con il suo errore. La frazione di energia che viene trasformata in energia elettrica è quella indicata. Determinare l'errore sulla potenza elettrica in W prodotta dalla centrale.

Dati 164.14 170.04 0.33484 0.72847

Risposta 392.6

Domanda numero 6. Il peso é 1.0

Il kWh (1 kW per un'ora) è un'unitá di energia che corrisponde a 3600 kJ. In un impianto, in 24 ore viene impiegata l'energia data in kWh. Sapendo che la differenza di potenziale dell'impianto è quella data in V, dire qual è la corrente in mA che ha circolato nell'impianto.

Dati 131.32 186.06

Risposta 0.2941E+05

Domanda numero 7. Il peso é 2.0

Alla resistenza data in $k\Omega$ viene applicata la differenza di potenziale data in V con il suo errore. Dire l'errore sulla potenza dissipata per effetto Joule in kW.

Dati 8.8635 144.33 1.7884

Risposta 0.5824E-04

Domanda numero 8. Il peso é 3.0

Una carica elettrica è data in C ed è disposta uniformemente su un volume sferico. Dato il raggio della sfera in cm determinare il *potenziale* in V alla distanza dal centro data in cm. *Controllare* se la distanza è maggiore o minore del raggio.

Dati -0.31296E-04 65.273 76.306

Risposta 0.5824E-04

Domanda numero 9. Il peso é 1.0

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che la focale è quella data in mm, dire quanto è ingrandita l'immagine prodotta.

Dati 0.35790 0.13246

Risposta 0.5875

Domanda numero 10. Il peso é 1.0

Un'onda sonora si propaga da un treno che si muove verso un ricevitore con la velocitá data in m/s e con frequenza anche essa data in Hz. Determinare la frequenza ricevuta dal ricevitore in Hz.

Dati 18.434 5342.9

Risposta 5618.

Domanda numero 11. Il peso é 0.5

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Determinare l'induzione magnetica che produce in T quando è percorso dalla corrente data in mA.

Dati 6400.0 0.14069 310.62

Risposta 0.1776E-01

Domanda numero 12. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in nm da un protone (stessa carica, ma positiva) e poi in un secondo tempo si trova alla distanza data in nm dal protone con una velocitá data in m/s. Determinare la velocitá in m/s che l'elettrone aveva nel primo punto.

Dati 0.10109E-02 0.28592E-02 0.13700E+08

Risposta 0.2269E+08

Domanda numero 13. Il peso é 0.5

Quattro resistenze hanno i valori che vengono dati in Ω . Dire il valore della resistenza totale in Ω quando esse vengono dispote in parallelo.

Dati 1492.1 13522. 5394.1 16748.

Risposta 1011.

Domanda numero 14. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul secondario ha il valore indicato, dire qual è la differenza di potenziale applicata al primario in kV.

Dati 2180.0 30600. 5502.6

Risposta 0.3920

Domanda numero 15. Il peso é 2.0

Un generatore produce la differenza di potenziale che viene data in V con il suo errore. Con la resistenza interna data in Ω , dire l'errore sulla differenza di potenziale in V agli estremi della resistenza data in Ω che viene posta in uscita.

Dati 8081.1 19.593 0.14909E+07 0.15964E+06

Risposta 1.895

Domanda numero 16. Il peso é 2.0

Una carica puntiforme data in C si trova alla distanza data in m da un'altra carica in posizione fissa. Data la velocitá in m/s con cui arriva la prima carica alla distanza di 1 nm dalla seconda, se la sua massa é quella data in g e se le due cariche sono di segno opposto, determinare il valore in C della carica in posizione fissa.

Dati 0.11909E-04 0.12522E-02 79512. 0.10044E-09

Risposta 0.2967E-17

Domanda numero 17. Il peso é 0.5

Alla resistenza data in $k\Omega$ viene applicata la differenza di potenziale data in V. Dire la potenza dissipata in essa per effetto Joule, in W.

Dati 3.2515 139.13

Risposta 5.953

Domanda numero 18. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in m^3/s , mentre l'altezza da cui cade l'acqua è anche data in m. Sapendo che la frazione di energia che viene trasformata in energia elettrica è quella indicata, dire qual è la potenza elettrica in W prodotta dalla centrale.

Dati 58.765 84.829 0.78881

Risposta 0.3856E+08

Domanda numero 19. Il peso é 3.0

Sapendo che l'obiettivo di un microscopio ha la focale data in mm e sapendo che un oggetto illuminato si trova alla distanza data in mm con il suo errore, dire l'errore sulla posizione dell'immagine.

Dati 0.11575 0.22132 0.84342E-02

Risposta 0.1014E-01

Domanda numero 20. Il peso é 3.0

Un solenoide é immerso in un campo magnetico H dato in A/m disposto inizialmente lungo il suo asse. Dato il numero di spire del solenoide ed il loro raggio in cm, determinare la differenza di potenziale massima che si trova ai suoi estremi quando esso ruota con la frequnza data in Hz.

Dati 3941.0 2945.1 59.783 34.585

Risposta 3559.

Domanda numero 1. Il peso é 2.0

Un elettrone (carica -1.6E-19 C e massa 0.9E-30 kg) si trova alla distanza data in μ m da un protone (stessa carica, ma positiva) con una velocitá data in m/s. Dopo un certo tempo si trova in un secondo punto con la velocitá data in m/s. Determinare a che distanza dal protone in nm si trova nel secondo punto.

Dati 0.78152E-05 0.11903E+08 0.10432E+08

Risposta 0.1570E-01

Domanda numero 2. Il peso é 2.0

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Conoscendo l'induzione magnetica che produce in T e la sua resistenza in Ω determinare la potenza dissipata nel solenoide in kW.

Dati 11600. 0.60085E-01 18.255 0.44125

Risposta 2.498

Domanda numero 3. Il peso é 3.0

Due resistenze hanno i valori e gli errori che vengono dati in Ω . Dire l'errore in Ω sul valore della resistenza totale, quando le due resistenze sono disposte in parallelo.

Dati 98481. 111.99 0.19737E+07 180.88

Risposta 102.0

Domanda numero 4. Il peso é 1.0

Il kWh (1 kW per un'ora) è un'unitá di energia che corrisponde a 3600 kJ. In un impianto, in 24 ore viene impiegata l'energia data in kWh. Sapendo che la differenza di potenziale dell'impianto è quella data in V, dire qual è la corrente in mA che ha circolato nell'impianto.

Dati 97.100 208.49

Risposta 0.1941E+05

Domanda numero 5. Il peso é 0.5

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul secondario ha il valore indicato, dire qual è la differenza di potenziale applicata al primario in kV.

Dati 3520.0 37400. 5643.0

Risposta 0.5311

Domanda numero 6. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in m³/s, mentre l'altezza da cui cade l'acqua è anche data in m. Sapendo che la frazione di energia che viene trasformata in energia elettrica è quella indicata, dire qual è la potenza elettrica in W prodotta dalla centrale.

Dati 115.53 129.71 0.74659

Risposta 0.1097E+09

Domanda numero 7. Il peso é 0.5

Quattro resistenze hanno i valori che vengono dati in Ω . Dire il valore della resistenza totale in Ω quando esse vengono dispote in parallelo.

Dati 1050.9 11758. 7618.7 13180.

Risposta 804.0

Domanda numero 8. Il peso é 1.0

Due conduttori hanno la stessa resistivitá che viene data in Ω m. Essi hanno anche la stessa sezione che viene data in mm². Essi hanno le lunghezze indicate in m. Dire qual è la resistenza totale in k Ω quando essi vengono collegati con le due estremitá in comune (parallelo).

Dati 0.96400E-07 0.56794 69.668 18.561

Risposta 0.2488E-02

Domanda numero 9. Il peso é 2.0

La resistenza data in Ω con il suo errore, viene attraversata dalla corrente data in A. Dire l'errore sulla potenza dissipata in kW per effetto Joule.

Dati 33.099 0.11133E-01 15.877

Risposta 0.2806E-02

Domanda numero 10. Il peso é 0.5

Un solenoide ha il numero di spire indicato ed è lungo come indicato in m. Determinare l'induzione magnetica che produce in T quando è percorso dalla corrente data in mA.

Dati 5000.0 0.13425 772.72

Risposta 0.3616E-01

Domanda numero 11. Il peso é 2.0

Un conduttore ha la resistivitá che viene data in Ω m. Esso ha la sezione che viene data in mm² con il suo errore. Dire qual è l'errore sulla resistenza del conduttore in $k\Omega$ se esso ha la lunghezza data in m.

Dati 0.16600E-07 1.3740 0.68792E-02 25.365

 ${\bf Risposta}~0.1534{\rm E\text{-}}05$

Domanda numero 12. Il peso é 2.0

Un trasformatore ha il numero dato di spire sul primario e sul secondario. Sapendo che la differenza di potenziale in V sul primario ha il valore indicato con il suo errore, dire l'errore sulla differenza di potenziale sul secondario in kV.

Dati 3060.0 33800. 1673.5 2.5593

Risposta 0.2827E-01

Domanda numero 13. Il peso é 1.0

Un dispositivo elettrico viene alimentato con la differenza di potenziale indicata in V e la corrente viene anch'essa data in A. Sapendo che il dispositivo viene tenuto in funzione per il tempo dato in ore, dire qual è l'energia in J che è stata dissipata.

Dati 338.17 16.747 2.2359

Risposta 0.4558E+08

Domanda numero 14. Il peso é 3.0

Le due cariche elettriche date in C sono disposte uniformemente su un volume sferico. Le due sfere si trovano ad una distanza data in cm. Dato il diametro delle sfere in cm determinare la forza in N che agisce fra di esse. Controllare se le sfere sono sovrapposte.

Dati 0.69030E-04 0.26992E-04 8.9805 33.440

Risposta 0.4558E+08

Domanda numero 15. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in kg/s. L'altezza da cui cade l'acqua è data in m con il suo errore. La frazione di energia che viene trasformata in energia elettrica è quella indicata. Determinare l'errore sulla potenza elettrica in W prodotta dalla centrale.

Dati 188.83 69.992 0.41950 0.50789

Risposta 394.5

Domanda numero 16. Il peso é 3.0

In una centrale idroelettrica si ha il flusso di acqua dato in kg/s, mentre l'altezza da cui cade l'acqua è anche data in m. Sapendo che la frazione di energia che viene trasformata in energia elettrica è quella indicata, dire qual è la potenza elettrica in W prodotta dalla centrale.

Dati 192.98 108.36 0.78318

Risposta 0.1606E+06

Domanda numero 17. Il peso é 0.5

Un oggetto illuminato si trova sul vetrino di un microscopio. Sapendo che l'obiettivo si trova alla distanza indicata in mm e che la sua focale è quella data in mm, dire a quale distanza in mm dall'obiettivo si formerá l'immagine.

Dati 0.25053 0.14445

Risposta 0.3412

Domanda numero 18. Il peso é 2.0

Due sfere sono cariche e le due cariche sono date in C. I centri si trovano alla distanza anch'essa data in m con l'errore. Determinare l'errore sulla forza in N.

Dati 0.63738E-04 0.22240E-04 0.25275 0.33182E-02

Risposta 5.236

Domanda numero 19. Il peso é 1.0

Una lente si trova alla distanza data in cm da un oggetto illuminato. Sapendo che l'immagine si trova alla distanza data, anch'essa in cm, dire quanto è l'ingrandimento della lente.

Dati 22.966 76.744

Risposta 3.342

Domanda numero 20. Il peso é 1.0

Un'onda sonora si propaga da un treno che si muove verso un ricevitore con la velocitá data in m/s e con frequenza anche essa data in Hz. Determinare la frequenza ricevuta dal ricevitore in Hz.

Dati 13.155 7939.9

Risposta 8236.