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Random data I

Frequency domain
analysis



Fourier transform

The Fourier transform is given by

T/2

X(f) = lim e 2™ty (t) dt
T— 00 —T/2

and the inverse transform is given by

F/2

z(t) = lim e 2Tt X (f) df

The Fourier transform is also a random variable



Power spectral density

Average value of the squared magnitude of the
Fourier transform

S(f) = (X (NI = (X (H)X*(f))
1 1/2

/2 T/2
= lim —/ e g (t) dt/ e 2ty (t)) dt’
T—oo 1" J 72 —T/2



Wiener-Khinchin theorem

The autocorrelation function of a wide-sense-stationary
random process has a spectral decomposition given by
the power spectrum of that process



Parseval’s theorem

(z(t)z(t — 7)) f S(f)e ™7 df

o= [ s

The average value of the square of the signal
(variance if the signal has zero mean) is equal to
the integral of the power spectral density



Examples
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Time Series
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White noise

® White noise is a random signal with a constant
power spectral density

® Sequence of serially uncorrelated random
variables with zero mean and infinite
variance

® If each sample has a normal distribution with zero

mean, the signal is said to be Gaussian white noise



Johnson-Nyquist noise

® Relaxation of thermal fluctuation in a resistor

® Small voltage fluctuation associated with
thermal motion of electrons

< V2. .. >=4kTRAf

® Example of fluctuation dissipation relationship



Shot noise

® Generated by discrete arrival

® clectrons in a wire

® ain on a roof

® Interactions can be ignored
® Arrival independent

® Poisson process



Shot noise

N
n=1
T/2 N N |
I(f) — Iim 6@27rftq (S(t _ tn) dt = q ez27rftn
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S(f) =< IHI(f) >= lim & (Z izt 3 e%'??rftm)
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| /f and switching noises

® Found in a wide range of transport
processes

® The power spectrum diverges at low
frequencies inversely proportional to the
frequency

S(f) o< f7°

® Scale invariant (look the same at all time
scale)



| /f and switching noises

® Many type of defects on a conductor
® lattice vacancies

® dopant atoms

® Different inequivalent types of sites in the material,
which have different energies

® There is a probability for a defect to be excited to
an higher-energy state and then relaxed to a

lower-energy state



Noise in a transistor

® Flat if no current flowing: Johnson noise

® |/f whit current flowing
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Characterization of polysilicon bipolar transistors by low-frequency noise and correlation noise measurements
Y Mourier, S G-Jarrix, C Delseny, F Pascal, A Pénarier and D Gasquet



Example: physical system pendulum

Focus on the pendulum angle
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Mass m=1 Kg, Length | = 1 m, rms motion =2 10-11 m



To learn more:

Random Data
J. Bendat, A. G. Piersol
Chap. 1 Basic Descriprions and properties



